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Summary

This thesis is within the field of simulated surgery and motivated by
the current demand for an educational tool teaching the common
procedure of wisdom tooth extraction. Attention is focused on how to
simulate the fragmentation that will separate the crown of the tooth
from its roots. We present a general method for crack prediction
and propagation in volumetric solids based upon real-time structural
analysis. The analysis is conducted using the finite element method
and the Total Lagrangian Explicit Dynamics solving technique with
a parallel approach. The stress and strain analysis are based on the
theoretical laws of physics and the crack prediction is based on the
theory of maximum principal stress from fracture mechanics. The
failure surface as predicted by the crack tracking algorithm looks
very promising. The location and curvature of the failure surface
corresponds to the stress analysis and the intuition of how an object
would actually fracture. Benchmarking the simulation model reveals
great potential towards real-time interaction and visual feedback.
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Readers Guide

This thesis consists of three parts. Part I presents analytical theories. This part includes statics,
dynamics, continuum, and fracture mechanics. Futhermore, elasticity theory and basic linear
algebra is introduced. Part II presents discrete theories. Here the fundamental equilibrium frame-
work and the finite element method are explained in detail and used to construct a simulation
model. Part III explains how the simulation software is designed and implemented. Parallel
execution is introduced and the simulation software constructed is evaluated. The following is a
brief summary of each chapter:

Chapter 1 introduces the reader to the field of simulated surgery and the potential of computer
aided simulations in general. Here the motivation behind this thesis is stated. Chapter 2 explains
the surgical procedure of wisdom tooth removal step by step. The physical phenomena of interest
are identified and the concepts real-time and simulator are defined. The main objectives in the
thesis is stated and related work are presented.

Part I - Analytic Theories

Chapter 3 introduces the fundamental physics used. Work, energy, and equilibrium are defined
before moving on to continuum mechanics where the concepts deformation, elasticity, stress and
strain are introduced. Chapter 4 explains the basic linear algebra used.

Part II - Discrete Theories

Chapter 5 introduces the fundamental structure for equilibrium problems in general. Chapter
6 describes the finite element method. The discretization of the continuum body and how to
assemble the system equations are explained in detail. Chapter 7 explains how to apply the finite
element method and a concrete solver technique is presented.

Part III - Implementation

Chapter 8 presents the simulation software developed. Chapter 9 introduces the concept of
parallel execution and explains how we utilize NVIDIA’s CUDA technology. Chapter 10 explains
the developed tools for interacting with the simulation software and how to visualise tensors.
Chapter 11 presents the results obtained. Chapter 12 is a discussion on possible improvements.
Chapter 13 summarizes and concludes on the results obtained.
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Chapter 1

Introduction

The research field of computer simulated surgery has been a topic of increased interest in recent
years. The current research has reached a level that facilitates real-time simulation of deformations
in soft organic materials. Using computer aided simulations as an educational tool or an interactive
training facility has a lot of potential when it comes to imparting new knowledge to students or
trainees. Surgical procedures can be studied and practiced iteratively through extended feedback
including any imaginable visual information. While performing the simulated surgery instructions
and guidance could be presented, any potential risk could be pointed out, and unexpected critical
scenarios could occur. Simulated surgery has the potential to enrich the learning process on so
many levels. From the perspective of the student the main objective of using simulated surgery
is to acquire certain, often very difficult, skills in a risk-free environment. Introducing surgical
certificates based on simulations is an option within the near future. Professional approval based
on simulated scenarios has been used for many years when educating and certifying pilots.

The field of simulated surgery still faces great challenges especially when it comes to the sense of
touch. It is very difficult to simulate the correct feedback on the tool being used e.g. the weight,
friction, momentum, manoeuvrability etc. Simulation models based on the laws of physics will
always be idealized and respond as predicted by theory. Sometimes theory and practice is not
consistent.

The development within computer aided visualization has been tremendous during the last
decades. The research within this field has benefited heavily from the huge investments made by
the entertainment industry constantly striving towards improving the level of realism. Simulating
organic material like human tissue or organs require a model capable of representing the complex
structures and the theoretical laws of behaviour. In the field of applied mathematics a generalized
method for conducting numerical modeling of physical systems was first well defined in the
late 1960’s and early 1970’s. Although these mathematical models are capable of capturing
complicated problems they tend to get very complex and computationally expensive. Within
recent years the introduction of multi-core hardware and the development in GPU programming
languages, suddenly has made these models, based on the actual laws of physics, realisable. By
taking advantage of the parallel architecture of the GPU, the computational resources have
increased by orders of magnitude assuming the problem can be solved in a parallel environment.

This thesis is motivated by the current demand for an educational tool teaching a specific dental
procedure. Inspired by related simulated surgeries The Aarhus School of Dentistry has requested
a simulator for teaching the common procedure of wisdom tooth extraction. Performing the
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Chapter 1. Introduction

surgical procedure requires certain skills and must be performed with caution to prevent serious
nerve damage. All surgery involves risks, in this case the patient’s tongue or part of the lip could
become permanently numb due to nerve damage. This emphasizes the importance of a proficiency
before operating on patients. Besides lots of lessons and videos teaching how to perform the
operation, students practise on a rubber doll known as a phantom. Operating on a phantom
is the last step before the students are expected to perform supervised operations on patients.
According to Professor, dr. odont. Søren Schou, Aarhus University, there is a huge educational
gap between operating on a phantom and a real patient.

This thesis deals with the development of a model for simulating one specific part of the com-
plete surgical procedure of wisdom tooth removal. Attention is focused on how to simulate the
fragmentation that will separate the crown of the tooth from its roots. By solving this particular
problem we get one step closer towards the development of a complete simulator, handling the
entire surgical procedure, hereby providing an educational tool with the purpose of minimizing
the gap between operating on a phantom and a real patient.

The simulation model is based on the finite element method which is a widely accepted method
for structural analysis. The physical laws from the field of continuum and fracture mechanics
concerning deformation and fragmentation of solids are applied to obtain as realistic results as
possible with the computational resources available.

Basically the simulator consists of three main parts. A visual, an interactive, and a computational
part. The visual part is responsible for delivering real-time three-dimensional images on the screen.
The interactive part handles the user interaction and simulates the dental tools accordingly. The
computational part is responsible for solving the equations defined by the method used for the
structural analysis.

It requires an interdisciplinary approach to develop a framework for simulating deformations and
possible fractures in solid objects. From the field of dentistry, knowledge on how to perform the
actual surgical procedure, is needed. Simulating real world phenomena of fracturing solid objects
involves theoretical physics and mathematics, as well as engineering disciplines of predicting
how solids behave under stress. Constructing a computational model representing the complex
structures that incorporates the laws of physics suitable for high performance parallel execution
is a computer science discipline. Implementing the simulator using the proper technologies,
benchmarking the software model and validating the results are all within the field of computer
science.
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Chapter 2

Problem Domain

2.1 The Surgical Procedure

To gain fundamental knowledge on how the surgical procedure is performed in real life, the
following section will explain each step involved. This section is based on an interview with
Professor, dr. odont. Søren Schou, Aarhus University, who carefully took his time to explain the
procedure in detail.

First of all when it comes to patients with wisdom tooth compilations, there are not two of a
kind, but basically all complications can be divided into four scenarios. Within each scenario the
location of the tooth can vary but the approach used to remove it is the same. The four scenarios
are illustrated in figure 2.1 on the next page. The different scenarios require slightly different
approaches when it comes to fragmenting the tooth. The following steps are carried out in each
of the four scenarios.

As a preoperative task the dentist carefully examines x-ray images of the wisdom tooth to
determine the risk of nerve damage. It is crucial that the nerves are left undamaged since this
can lead to complete and permanent numbness of the tongue and lip.

Anaesthesia

The surgical procedure can be performed under local anaesthesia, leaving the patient conscious
during the entire operation. The local anaesthesia is carefully injected directly into the nerves
located on the inside of the jaw, making the tongue, part of the lip and the wisdom tooth numb.
The anaesthesia substance contains adrenaline which contracts the blood from the blood vessels,
hereby minimizing the bleeding from the wound. Shortly after the anaesthetic injection, the
dentist pinches the surrounding tissue to ensure the area is numb.

Incision

The soft tissue surrounding the wisdom tooth, on the outside of the jaw, needs to be loosened
to expose the tooth. The cut starts from the back of the jaw and is carefully placed along the
outside of the first and second molar, illustrated as the red line in figure 2.2 on the following
page. The yellow dot is where the wisdom tooth is located, currently covered by soft tissue. It is
crucial not to damage the nerve located on the inside of the jaw, therefore the incision is always
performed on the outside of the molars. The cut is made slowly while any blood from the wound
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(a) Angular (b) Partial Eruption

(c) Horizontal (d) Vertical

Figure 2.1: The four basic scenarios showing how the wisdom tooth can be located in the jaw.

is sucked away with a small tube to keep visibility high and to prevent it from running down
the patients throat. When the incision has been made, the soft tissue can be pulled to the side
hereby revealing the wisdom tooth and part of the roots of the first and second molar. Often the
wisdom tooth is located deep down the jawbone so only the crown of the tooth is visible when
the soft tissue has been removed.

Figure 2.2: The red line illustrates where to place the incision. †
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Bone Removal

Now that the soft tissue is removed the next step is to remove the surrounding jawbone. This is
done using a drill on the outside of the jaw as illustrated with the red line on figure 2.3. Drilling
away the surrounding jawbone will expose the wisdom tooth down below its crown. When drilling,
the point of contact between drill and jawbone, is constantly cooled with water to prevent the
nearby soft tissue from heating up potentially causing damage.

Figure 2.3: The red line illustrates where the jawbone must be drilled away. †

Drilling a Groove

Now that the wisdom tooth has been exposed from both the surrounding tissue and jawbone, the
dentist can move on and prepare a controlled fragmentation of the tooth. The fragmentation
must carefully separate the crown of the tooth from its roots as illustrated by the red line in
figure 2.4. A straight groove is drilled along the red line, as illustrated on figure 2.4. The groove
is approximately 5 millimeters deep, or one third of the tooth, and located right below the crown.

Figure 2.4: The red line illustrates where the groove should be drilled. †

The dentist always tries to avoid drilling down the enamel on the crown of the tooth, because it
is so hard that the drill will be worn down too fast.
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Fragmentation

A special tool known as an elevator, illustrated in figure 2.5, is now inserted into the groove and
twisted to separate the crown of the tooth from its roots. Sometimes, due to the location of the
wisdom tooth, it is necessary to perform further fragmentation to either the crown or the roots.

Figure 2.5: Dental tool known as an elevator. †

Fracture Removal

Now that the tooth has been fragmented the individual parts must be removed carefully. It is very
important to make sure all of the fragments are removed properly. If a small piece is left behind
it can cause complications such as wound infections. Usually wisdom teeth are removed only if
they cause some sort of complications. A common complication is when other teeth prevent the
natural development, often causing an small infection around the wisdom tooth. The infected
tissue must be removed from the wound as well.

Smooth Off the Rough Edges

The dentist has to smooth off the rough edges in the jawbone to prevent complications with the
soft tissue surrounding it. The crater from where the wisdom tooth was located, must be cleaned
thoroughly with water to wash out every tiny bit of bone from the drilling.

Stitching the Wound

The last step in the surgical procedure is to stitch the wound together. Usually two stitches is
enough but this depends on the size of the wound. When the stitching is done a small cloth is
inserted in the cheek to absorb any remaining blood. The surgical procedure is now done.

2.2 Simulator

In context of computer science a simulation is a computational model that approximates a real
phenomenon or procedure. A simulation defines rules of behaviour reflecting those appearing in
the real world. The results produced by a simulator can be used for evaluation or prediction of
the phenomenon or procedure simulated. Challenges arise due to the almost unlimited complexity
of any real world phenomena no matter how simple it seems. Specific parts of the phenomenon
being simulated must be prioritised, but even then only a certain level of detail can be computed.
If time and computational resources was no issue, designing a model that strictly represents solid
objects by the smallest unit possible, would be a solution. However intuition tells us that it is
probably impossible to represent and simulate the physical laws for such small units. Let us
consider atoms as the basic unit of matter, the nucleus diameter of an atom is about 10−15 meter.
Even for a small object like a tooth the amount of units to be represented would be billions, easily
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exceeding the computer resources available. A discrete method must be used in order to facilitate
computation of the problem domain.

Real-time

It is crucial that the simulator gives the impression of a surgical procedure performed in real-time.
The concept of simulated real-time can be considered from two different perspectives. One way is
to measure real-time as the speed of average sensory perception. By measuring real-time this way
we consider how fast the system is responding to an event such as user interaction. In this sense
real-time is more of an illusion where users should perceive the simulation feedback at a rate that
corresponds to the actual scenario in real life.

" It doesn’t really matter whether the deformation that the surgeon sees in the virtual
environment is accurate as long as it seems realistic! Just as important is that the
model is robust and shows a consistent and predictable behavior over time"

(Morten Bro-Nielsen [BN98, page 8])

Another way of defining real-time is to consider the extrapolate of simulation time contra the
computation time used. When simulating a phenomenon time must be discretized into time steps
that represents the difference in time from the current configuration to the next. If it is possible
to compute the next configuration faster than the time extrapolation it represents we can predict
the behaviour of the phenomenon in real-time. If not we can pre-compute the behaviour and
inspect them at a real-time rate afterwards, but this rules out real-time interaction which is an
essential part a surgical simulator.

To accommodate the demand for real-time execution appropriate solving techniques must be
used. A variety of limitations and approximations must be taken into account to keep the
result plausible. When the level of simulation details increases so does the computational efforts.
Making the right decisions in the trade-off between accuracy and speed is essential. Each time an
approximation is made the margin of error must be considered to prevent the final result from
ending wide of the mark.

Phenomena

Before designing a model that represents the processes we would like to simulate, we need to
identify the physical phenomena. It is no surprise that different materials behave very differently.
Dropping a glass vase on the floor would probably break it while a rubber ball would bounce
back without a scratch. What might be a surprise to some, is the rather complex physical theory
behind this. The answer to why some materials are able to undergo change in form without
breaking and others are not, lies in the structure of the molecules. Since representing a material on
the level of molecules would exceed the computational resources, this phenomenon must somehow
be represented on a higher level.

A rubber ball can deform into an ellipsoid and still return to its original form. In physics elasticity
is the property that makes a material deform due to external forces, but still makes it return to
its original form when the external forces are removed. This phenomenon requires a model where
external forces somehow are transformed into elastic energy.
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A homogeneous material contains only identical molecular structures and is therefore a pure
material with the exact same properties everywhere. In the real world this is rarely the case, most
materials are a composition of others. A tooth has different layers each with different material
properties. From that perspective modelling heterogeneous materials would probably be preferable.

It is common knowledge that most material properties change as a result of change in temperature.
When steel is heated its strength decreases, and rubber cooled down to extremely low degrees
can shatter like glass. Decision must be made whether or not to represent this phenomenon in
the simulation model.

When things break in the real world it often happens in a blink of an eye. A rule of thumb
says that a crack propagates through a brittle material with the speed of sound. Observing the
propagation would require a high speed recording of the phenomenon for later replay in slow
motion. Intuition tells us that the crack must have a point of origin. As the crack propagates
through the material it must somehow choose its path based on the material properties and the
external forces acting upon the material.

2.3 Problem Statement

As already mentioned the surgical procedure of removing a wisdom tooth involves various steps
of cutting tissue, drilling, fracturing dental material, stitching tissue, etc. Simulating each step
requires a different approach and the use of distinct theory. It is out of scope of a single masters
thesis to handle all of the different step.

Considering the relatively limited amount of work published within the field of fracturing volu-
metric models in real-time compared to the other fields of interest from the various simulation
steps, attention will be focused on solving this particular problem.

This thesis deals with simulating the specific parts of the dental procedure that involves fragmen-
tation of the tooth. Separating the crown of the tooth from its roots involves estimation of the
internal stress and prediction of crack propagation through a solid material. The estimation of
internal stress will be based on the finite element method which is a widely accepted method used
for structural analysis. Using the finite element method to conduct real-time analysis is a fairly
new concept developed within recent years. It has proved to be one of the most precise methods
available. The method for predicting the point of origin and the propagation of the crack will be
based upon the theory of maximum principal stress. To the best of our knowledge the parallel
approach of conducting real-time structural analysis in conjunction with crack propagation, based
upon maximum principal stress is new to the field.

The main objective in this thesis is to create a framework for real-time simulations of deformation
and crack initialization in solid objects. With point of reference in the laws of physics we will
construct a simulation model that strictly complies with relevant theory. The context of use is
simulated surgery therefore speed and robustness of the model will be favoured over accuracy.
External forces will be applied through a simulated dental tool, similar to the elevator actually
used by dentists. The stress and strain analysis will be based on the theoretical laws of physics
and the crack prediction will be base on the theory of maximum principal stress direction from
fracture mechanics. We will construct a model aimed towards real-time crack detection based upon
analysis of stress and strain behaviour. If the internal level of stress exceeds a material-specific
threshold the solid object will fracture. Once the point of origin of the crack has been predicted
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the determination of the crack surface is not considered time critical.

2.4 Related Work

The purpose of solving the particular problem of how to fracture solid material in real-time, is to
establish a theory that will bring the development of a complete dental surgical simulator one
step closer to reality. The simulation model presented in this thesis is base upon the combination
of numerous theories and existing methods. The following articles presents closely related work
and methods we have derived our simulation model from.

Morten Bro-Nielsen was among the pioneers within real-time simulation of deformable models
used for simulated surgery. Morten Bro-Nielsen [BN97][BN98] presents a method base on a
Fast Finite Element (FFE) method and linear elasticity. The interior nodes are removed from
the equations to improve performance. Even though the interior nodes are excluded from the
calculations the predicted behaviour of the surface nodes are exactly the same a if interior node
was taking into account.

Miller et al. [MJLW07] present an efficient numerical method for computing soft tissue in real-
time, based upon finite element analysis. Their method is based on total Lagrangian formulation
relating stress and strain to the original configuration.

Zeike A. Taylor et al. [TCO08] present an improved method based directly upon the work
conducted by [MJLW07]. The improvements made are primarily on how to solve the finite
element equations in parallel using the GPU hereby gaining a significant increase in performance.

Thomas Sangild Sørensen and Jesper Mosegaard presents methods on how surgical simulations
can accelerate deformable models through the parallel nature of the GPU[SM06b]. They show
that deformable models based on the spring-mass or finite element method can be implemented
using parallel programming hereby gaining a significant increase in performance.

Depending on how much the wisdom tooth is developed, fragmentation of the tooth can be neces-
sary. Teeth are primarily made of a material called dentin which consists of calcium, phosphorus,
and other mineral salts. Dentin is a very hard and brittle material. Techniques for simulating
fracture initialization and propagation in brittle materials has been presented by O’Brian et al.
[OH99]. The method presented is based on finite element analysis and aimed towards pre-rendered
simulations.

Matthias Müller et al. [MMDJ01] present a method for real-time deformation and fractures in stiff
materials. The method presented introduces a hybrid approach where the simulation is alternating
between simulating rigid body dynamics and the continuum model at the point of impact. The frag-
mentation method used includes model re-meshing which improves the realism of the crack surface.

A comparison of different fracturing techniques has been conducted by P. Jäger et al. [JSK08].
The article compares four different approaches in terms of standard quality measures such as
efficiency, robustness, stability and computational cost.

Besides the closely related work, we have also paid attention to the following articles and PhD the-
ses presenting methods that could be used for simulating the other parts of the complete simulator.
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In relation to handling input the user, here being a surgeon, must be presented to a device capable
of simulating the tools similar to the ones used in real life. Surgeons are used to manoeuvre tools
freely in three-dimensional space. An ordinary computer mouse has only two degrees of freedom
which makes it unfit. Instead of conventional user input like those of a keyboard or mouse, we
would prefer haptic feedback. Haptic refers to the sense of touch. In the context of surgical
simulations it means a device that interfaces with the user through force feedback. The haptic
device serves as a three-dimensional joystick with the extra feature of delivering force feedback,
when the virtual tool intersects with an object in the simulator. Handling user input immediately
is crucial to prevent the surgeon from experiencing latency and hereby loosing the illusion of
real-time. Thomas Sangild Sørensen and Jesper Mosegaard[SM06a] present efficient methods for
handling high-frequently haptic feedback using the GPU.

If the wisdom tooth is not developed enough the dentist will have to cut the surrounding tissue
to expose the wisdom tooth. As seen in figure 2.1 on page 6 the amount of tissue to cut open
depends on the location of the tooth. Techniques for cutting soft tissue, based on a spring-mass
model, has been presented as part of a cardiac surgery simulator by Jesper Mosegaard[Mos06].

When the wisdom tooth is exposed, the next step is to drill a hole into the tooth as a preparation
for the fragmentation. A method for drilling in volumetric material in context of simulated
surgery has been developed by Peter Trier et al. [TNSM08]. The method is base on a data set
available as a three-dimensional image format, and visualization based on ray-castings. This
technique has proved very promising.
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Chapter 3

Physics

Physics is a science based on experiments where phenomena of nature are observed with the
objective of finding patterns and principles. These patterns and principles are called theories or,
when they are commonly accepted, laws of physics [YFFS00, page 1]. As already touched upon in
section 2.2 on page 8, the simulator incorporates such physical laws to simulate deformation and
fragmentation of solid material. This chapter introduces the physical theories needed to create a
simulation model. The aim is to assemble a theoretical model for deformation and fragmentation
based on the laws observed and generally accepted by physicists. Note that the physical laws
used are idealized models, meaning that the models are simplified versions of real phenomena and
that concepts of little importance for the overall result are neglected [YFFS00, page 3]. In this
respect we do not model material at the level of particles as the effects of individual particles are
not detectable when larger volumes of matter are considered. This is called large-scale mechanics
in contrast to quantum mechanics, which deals with laws at the level of atoms. Large-scale
mechanics is valid when the size of the material analysed is much larger than the size of an atom
[Dil07, page 1].

The subgroups of special interest are statics, dynamics and continuum mechanics. As the theory
of continuum mechanics is quite complex, we will start off gently by revisiting basic university
physics in the context of statics and dynamics. Here we define various physical quantities, their
corresponding units and how they are related.

3.1 Statics and Dynamics

In statics, we only analyse objects that do not move. This enables us to describe and relate
various phenomena acting upon an object. The next step is dynamics, where objects are allowed
to move but not to deform. Dynamics expands the analytical method by allowing movement
and rotation. In statics an object is viewed as a single point which describes it’s position. In
dynamics objects are modeled by their position and orientation. Statics and dynamics makes
these assumptions so objects are less complex to analyse. In continuum mechanics objects are
represented by volumetric elements, which are more complex.

Space and Time
Within statics and dynamics, objects and forces alone are not enough when analysing a physical
system. The concept of an object at rest or in motion requires a frame of reference. A frame of
reference is any kind of coordinate system which enables us to uniquely define the position of
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a body in three-dimensional space. To describe motion the frame of reference must be fixed so
only motion of the moving body is considered. By introducing time we can refer to an object at
a given time, hereby describing the object’s velocity and acceleration. Complying with the SI
system for units, distance is measured in meters (m), time in seconds (s), velocity in m/s, and
acceleration in m/s2.

Forces
In mechanics there are many different types of forces, therefore we need some basic terms to
describe them. A force has a direction and a magnitude. The direction is referred to as the line
of action. The magnitude determines the size of the force and is measured in newton (N). A
force acts upon an object at a specific point as illustrated in figure 3.1: A force is depicted in a
free-body diagram as an arrow mounted at the point in which it acts.

Figure 3.1: Free-body diagram of the gravitational force acting upon a box.

In mechanics an object is composed of two distinct concepts: a surface and a body (note that
the entire object is often referred to as the body, which can be a little confusing). Forces can be
divided into different types, the types used in this thesis are: body contra surface and internal
contra external. External forces act upon a physical system from the outside and can not be
generated by the system itself. An example of an external body force is the gravitational force as
illustrated in figure 3.1. When two objects collide, a contact force occurs between the colliding
surfaces. This is an example of an external surface force, and is illustrated in figure 3.2 on the
next page. Internal forces do not occur in statics and dynamics because the various internal parts
of an object cannot move and hereby interact. When modelling deformations, various parts of an
object can interact, hence we need internal forces. In section 3.2 on page 26 internal forces will
be introduced.
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(a) (b)

Figure 3.2: A contact force.

Forces can be represented by vectors and therefore be resolved into components. Resolving a
force into its components sometimes eases the analysis of a problem. Figure 3.2 illustrates the
contact force resolved into two components N and f , defined as the force normal to the contact
plane and a friction force along this plane, respectively [BF95b, page 80].

Equilibrium
To analyse a problem in physics, for example a free-body diagram, the notion of equilibrium is
used. Equilibrium in general means an unchanging state or a state of balance. In mechanics
equilibrium is defined as:

Definition 1. A body is in equilibrium if it is either at rest or moving in a straight line with
constant velocity [YFFS00, page 97].

If a body is in equilibrium we can use definition 1 to analyse entities influencing the object’s
behavior. Depending on what types of problems we consider and which kind of results we are
seeking, this definition of equilibrium must be interpreted differently to meet the constrains
imposed on a given problem. We now consider three interpretations of the definition, with
increasing generality of the problems they capture, in each step lowering the number of constraints
imposed on the problem.

Equilibrium for Fixed Objects

When more than one external force act upon an object, the forces can be added to yield the
sum of forces. The sum of forces is the effective net force acting upon the body. We use this
knowledge to establish equilibrium for fixed objects. Statics define equilibrium as conservation of
forces defined by:

Definition 2. A body that can be modeled as a particle is in equilibrium whenever the vector
sum of the forces acting on it is zero. That is:

∑
f = 0 [YFFS00, page 329].

We can use this definition of equilibrium to analyse problems involving fixed objects. That is:
We can calculate unknown forces. Imagine that we apply external gravitational force to an object
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placed on a table. With the equilibrium equation we can calculate the force provided by the table
to support the object.

Equilibrium for Moving Objects

Equilibrium for fixed objects does not apply to moving bodies. In order to model motion, more
theory is needed. The simplest moving body is a rigid body. A rigid body is allowed to move but
not to deform. Movement has two distinct components: translation and rotation. When applying
the theory of equilibrium on rigid bodies, translation and rotation must be included into the
definition of equilibrium.

Definition 3. In addition to the requirements of equilibrium for fixed objects, the sum of all
torques due to all external forces acting on the body, with respect to any specified point, must be
zero. That is:

∑
f = 0 ∧

∑
m = 0 [YFFS00, page 329-330].

Torque or angular momentum is a measure of a rotational force. Torque is defined as: m = r × f ,
where the force f is acting on a line of action perpendicular to the lever arm, in a distance of r
[YFFS00, page 294-296]. Note that equilibrium for fixed objects is a subset of equilibrium for
moving objects, and is exactly the special case where all torques are zero.

Equilibrium for Deformable Objects

When considering deformable objects, we no longer use forces as the quantity to define equilibrium.
To define equilibrium for a deformable object, we will instead used the principle of conservation
of energy as define in definition 4.

Definition 4. The mechanical energy in a conservative system is always constant [BF95a,
page 160].

In order to understand definition 4 we need to introduce: work, kinetic energy, conservative
systems, potential energy, and mechanical energy. Again we note, although this time not directly
apparent, that equilibrium for moving objects is a subset of equilibrium for deformable objects.
In section 3.2 on page 23, when the theory of continuum mechanics is elaborated, we will return
to what equilibrium is for a deformable, in that section it will be applied to a continuum.

Work
Work is the amount of energy transferred by a force acting over a distance. For a moving body
where forces are not uniformly distributed work is defined in terms of differential work. So to
calculate the total work W we integrate dW , where dW is the differential work done by f as a
result of the displacement dr. Work is measured in Newton meter (Nm) or Joule (J) [YFFS00,
page 174-179].

dW = f · dr = (|f |cosφ)|dr| ⇔ W =
∫
dW =

∫
f · dr (3.1)

Consider a force f acting on an object at point P as illustrated in figure 3.3a on the facing
page. Suppose the object undergoes an infinitesimal motion, so P has displaced by vector dr (see
figure 3.3b on the next page). The differential work dW done by f as a result of the displacement
dr can then be illustrated as in figure 3.3c on the facing page. In this figure the force f is not
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parallel to dr and therefore only a part of the force produces work. The precise amount of work
produced by f is equal to the length of f projected onto dr [BF95b, page 558].

(a) A force f acting on an object (b) A displacement dr of P (c) dW = (|f |cosφ)|dr|

Figure 3.3: Illustration of work.

Energy

Although work and energy are related and both are measured in Joule (J), they are not entirely
equal concepts. Work refers to a force acting over a distance. Energy on the other hand is used
when referring to the amount stored or produced by an object. We use two concepts to describe
an object’s energy: Kinetic energy and potential energy.

Kinetic Energy

Kinetic energy is the energy of motion. Whenever an object moves it possesses kinetic energy.
The amount of kinetic energy within an object with mass m and velocity v is defined as the work
needed to accelerate the mass m from rest to velocity v. The object maintains its kinetic energy
as long as the velocity is constant. If the velocity increases or decreases so does the kinetic energy.
It would require the same amount of work to decelerate an object to rest, as it took to accelerate
it to velocity v. The force required to decelerate the object has to be in the opposite direction.
The kinetic energy Ek of an object is defined by [YFFS00, page 164-165]:

EK = 1
2
mv2 (3.2)

Kinetic energy is related to work by the work-energy theorem, which states that work equals the
change in kinetic energy [YFFS00, page 170]:

W = E1
K − E0

K = ∆EK (3.3)
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Potential Energy

Potential energy, denoted EU , is the energy stored within a physical system. An object can
possess potential energy as a result of its position. If for example a heavy weight is elevated and
held above the ground it possesses potential energy. The energy stored has the potential to be
converted into a different form of energy, e.g. kinetic energy. Compressing a spring is another
way of storing potential energy within an object. If the force compressing the spring is removed
the spring’s restoring force will make it return to its original position. Potential energy exists
when an object is displaced and there are forces acting towards bringing the object back to its
original position.

Conservative and Non-conservative Systems

When kinetic energy can be converted to potential energy, and back again, we say that there is a
two-way conversion of energy. Systems with the two-way conversion property are conservative
systems, those without are non-conservative systems. A system where energy is turned into heat
is an example of the latter [YFFS00, page 209-210]. Conservative systems are isolated and have
the property that energy does not dissipate.

Conservation of Mechanical Energy

When dealing with a conservative system the total amount of energy is refered to as the mechanical
energy (EM ), and is defined by:

EM = EK + EU (3.4)

In a conservative system no energy dissipates therefore the mechanical energy within the system is
constant. Kinetic energy can be stored by converting it to potential energy. The classic example
is: When throwing a ball upwards, kinetic energy is converted into potential energy on the way
up. On the way down the opposite happens. The relation that makes this possible is called
conservation of mechanical energy and is a direct consequence of equation (3.4) for a conservative
system [YFFS00, page 196]: If we consider an object that is deformed, it has an initial state
(state 0), and a deformed state (state 1). In both states the energy can be calculated as:

E0
M = E0

K + E0
U E1

M = E1
K + E1

U (3.5)

if the system is conservative, we know that:

E0
M = E1

M ⇔
E0
K + E0

U = E1
K + E1

U ⇔
E0
K − E1

K = E1
U − E0

U ⇔
−(E1

K − E0
K) = E1

U − E0
U ⇔

−W = E1
U − E0

U ⇔
−W = ∆EU

(3.6)

by setting the initial potential energy E0
U to zero, we obtain:

E1
U = −W (3.7)
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3.2 Continuum Mechanics

In continuum mechanics we assume that the substance of a body is a continuously distributed
matter, that is distributed throughout and completely fills the space it occupies. We also
assume that the substance is homogeneous, that is, the entire body consists of the same material.
Continuum mechanics ignores the fact that matter is not continuous at the level of atoms. By
ignoring this we can approximate physical quantities, such as energy and work, at the infinitesimal
limit.

Continuum

Continuum as a concept describes a material as a fixed region of space. This region forms the
geometrical state of a body. We imagine the region completely covered by a set of infinitesimal
volumetric elements, called particles. The position of all particles at a time t is called a configura-
tion. A particular configuration is chosen as the reference configuration and each particle in the
reference configuration is identified by the position vector X. The reference configuration is often
chosen as the configuration at time t = 0, where the body is in an undeformed state and at rest
[Dil07, page 4].

Figure 3.4: A continuum body.

The components of X in the chosen reference frame are referred to as the material coordinates. We
say that the particle P occupies the place X as illustrated in figure 3.4. Suppose that the region
covered by the body at reference time t = 0 is R0. If the body moves and at time t occupies R,
then we describe this configuration in relation to the reference configuration by spatial coordinates
x. This scenario is illustrated in figure 3.5 on the following page. The spatial coordinates are the
material coordinates plus a displacement: x = X + u, where u is referred to as the displacement
vector. Spatial coordinates can also be calculated as a function f of the reference configuration
and time: x = f(X, t) [Spe80, page 33-35]. Note that by the definition of material and spatial
coordinates, there has to be a one-to-one correspondence between material points and spatial
points.
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Figure 3.5: Displacement of a continuum.

Deformation
If two configurations of a body are not the same, one or more of the particles have been displaced.
A displacement can be divided into two distinct components: a rigid body displacement and a
deformation. The difference being whether or not particles have moved in relation to each other.
In a rigid body displacement the relative inter-particle distances are preserved. In a deformation
they are not.

Figure 3.6: Deformation of an infinitesimal line segment.

Consider the straight line through the undeformed configuration as illustrated in figure 3.6. After
the body has undergone a deformation the straight line has been mapped to a smooth curve
as illustrated in the deformed configuration. Somehow we would like to represent the line or
fiber deformation that takes place. Focus attention on the line segment dx and imagine that the
length of the line segment is much shorter than the radius of curvature. The small line segment is
straight in the undeformed configuration and very close to straight in the deformed configuration.
By decreasing the length of the line segments we improve the approximation of the curvature.
This way we can describe even complex deformations of a body since it is reasonable to neglect
curved material fibers as long as we only consider infinitesimal line segments. The infinitesimal
line segments dx and dy are related by the ratio: dy

dx [Bow09, section 2.1.2]. If this ratio is 1 the
material is undeformed, between 0 and 1 it is compressed and if above 1 it is stretched.

24



Section 3.2. Continuum Mechanics

Strain

Strain is a measure of deformation. Strain represents the amount of stretch or compression by
the relative distance between two particles in the material body. It is a dimensionless quantity,
which can be expressed as a decimal fraction, or a percentage. In comparison with the ratio dy

dx
from section 3.2 on the facing page: A strain measure of zero means no deformation, below or
above represents compression or stretching respectively. Strain can be decomposed into normal
strain and shearing strain.

Normal Strain

Normal strain occurs when forces acting parallel to the axes of the reference frame pull equally
throughout the body. Normal strain has the property of scaling the body in the axial directions.
Figure 3.7 illustrates normal strain in one dimension. Here two external forces pull in opposite
directions on a body hereby stretching it.

Figure 3.7: Normal strain.

For the simple case of a body axially loaded, the normal strain will be uniformly distributes
through out the body and can be obtained by dividing the displacement (how much the body is
stretched) by the initial length of the body.

normal strain: l − l0
l0

= ∆l
l

(3.8)

In general strain is not distributed uniformly over the entire body, therefore we define strain at
a specific point within the body. Because continuum mechanics assume strain to be continues,
differential calculus is used to define strain at any point. In three dimensions, we have a normal
strain component for each direction in the reference frame. Written out as individual components
this becomes: [HDSB01, page 659]

εx = ∂ux
∂x

εy = ∂uy
∂y

εz = ∂uz
∂z

(3.9)

were u is the displacement vector with components ux, uy and uz being the displacement along
the x, y and z axis of the reference frame, respectively. Normal strain can be represented on
vector form as: ε = [εx, εy, εz]T .
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Shearing Strain

Shearing strain occurs when the forces are not aligned with the axes of the reference frame or if
they are not uniformly distributed over the body. This results in distortion of the body’s shape
as illustrated in figure 3.8.

(a) Shearing strain in one direction. (b) Shearing strain in two direction.

Figure 3.8: Shearing strain.

Shear strain is defined as the ratio of the displacement x of the corner b to the transverse dimension
h [YFFS00, page 343]:

shear strain: x
h

= tanφ (3.10)

Figure 3.8a illustrates basic shearing strain in one direction. In three dimensions we are interested
in defining the resulting shear strain between planes. Figure 3.8b illustrates the distortion from
shear strain in two directions. To measure the resulting shear strain between the xz-plane and
the yz-plane the two individual shearing strains is added together. The individual components of
the shearing strain in three dimensions are [TG70, page 7]:

γxy = ∂ux
∂y

+ ∂uy
∂x

γxz = ∂ux
∂z

+ ∂uz
∂x

γyz = ∂uy
∂z

+ ∂uz
∂y

(3.11)

where ux, uy and uz is the axial displacements along the x, y and z axis, respectively. Shearing
strain can be represented on vector form as: γ = [γxy, γxz, γyz]T .

Internal Forces
Internal forces only exist inside an object, where one part of an object is subjected to forces by
another part of the same object [BF95b, page 79]. Internal forces can be experienced simply by
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stretching a rubber band. When stretching a rubber band the external force, responsible for the
stretching, induces internal forces. When the external force is released the rubber band returns to
its original shape hereby releasing the internal forces as well. The way a body behaves depends
on its material properties. How different materials behave is elaborated in section 3.3 on page 29,
but first stress is introduced as this is a representation of the internal forces.

Stress

Stress is a measure of the average amount of force exerted per unit area (N/m2). It is a measure
of the intensity of the total internal forces acting within a body across imaginary internal surfaces,
as a reaction to external applied forces.

stress = f

A
(3.12)

As with strain, stress can be decomposed into two separate components: normal stress and
shearing stress. Consider an infinitesimal cubic element with edges parallel to the axis as illustrated
in figure 3.9.

Figure 3.9: Stress in three dimensions.

The components of normal stress is denoted σx, σy and σz, one for each axial stress acting
perpendicular to a body face. Normal stress is either tension or compression, often causing change
in volume. Shearing stress is denoted τxy, τyz and τzx, each acting parallel or tangential to a
body face causing it to deform without particular volume change. The first letter in the double
subscript indicates the plane in which the stress acts; whereas the second subscript indicates in
which direction the stress acts. For example τxy has x as its first subscript therefore the stress acts
in the yz-plane because the coordinate direction x is a normal to this plane. Second subscript is
y indicting the actual stress direction. We assume equilibrium of the element’s volume, therefore
τxy must be equal to τyx or else the element would not be at rest. This means we only need
three shear stress components since τxy = τyx, τyz = τzy, and τzx = τxz. Altogether we only need
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the six independent quantities σx, σy, σz, τxy, τyz and τzx to completely describe the state of
stress at a given point in the continuum [HDSB01, page 658]. When considering stress in three
dimensions we refer to the measure as a force per volume, rather then the individual components
as force per area. The normal stress can be represented on vector form as σ = [σx, σy, σz]T and
the sharing stress as τ = [τxy, τxz, τyz]T .

Strain Energy
The potential energy stored within a deformed body is called strain energy. Strain energy is
calculated the same way, we calculate work, but instead of relating force and displacement we
use the stress and strain induced in the body. The body’s internal potential strain energy is
calculated as:

ES =
∫
V

ε · σ dV +
∫
V

γ · τ dV (3.13)

where the strain and stress vectors dotted and integrated over the volume V yields the internal
potential strain energy. The integral insures that the internal forces are distributed uniformly
throughout the volume [Str86, page 224]. Because stress is a force per volume measure, the strain
energy is also a force per volume measure.

Strain Energy Density
The strain energy density dES , is the strain energy per unit volume, which can be obtained by
[TG87, page 625]:

dES =
∫ ε

0
σ dε+

∫ γ

0
τ dγ (3.14)

and when stress-strain curves are introduced in section 3.3 on the next page, this constitutes
the area below such a curve. Strain energy and strain energy density are directly related by the
following equation:

ES =
∫
V

dES dV (3.15)

Equilibrium for a Continuum
As described in section 3.1 on page 20, equilibrium for a deformable object is defined in terms of
energy. Here we will specify this definition for a continuum. Recall from section 3.1 on page 22
that when an object has changed shape we consider two states of the object and their energy
relation. Equation (3.7) is repeated below, it relates the change in potential energy to the work
done be kinetic energy. Equilibrium for a continuum is precisely this, the relation between the
work done by external force, and the resulting internal force measured as potential energy.

−W = ∆EU
As normally done we set the initial potential energy E0

U = 0, which means that the equation
becomes: −W = E1

U . The internal potential energy is the strain energy for a continuum and is
defined in equation (3.13) as:

ES =
∫
V

ε · σ dV +
∫
V

γ · τ dV
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The work done by the external forces is defined to be: surface work + body work. Forces acting
upon the body (volume) are denoted fV and traction (surface forces) fS , u is the displacement
vector, V the volume and S is the surface. The work is calculated by integrating force times
displacement over the volume and surface, as described in section 3.1 on page 20.

surface work:
∫
S

u · fS dS body work:
∫
V

u · fV dV (3.16)

A surface integral can be converted into a volume integral using the Gauss divergence theorem.
By doing this the total external work can be expressed as [Mas70, page 49]:

external work:
∫
V

u · fV dV (3.17)

Substituting these definitions into the equation: −W = E2
P , we obtain:

− (
∫
V

u · fV dV ) = (
∫
V

ε · σ dV +
∫
V

γ · τ dV ) (3.18)

Consider equation (3.18), when external forces are applied, the body reacts by either adjusting
the displacement or the level of internal energy.

3.3 Mechanical Properties

We will now elaborate on how stress and strain is related. Mechanical properties of a material
describe how stress and strain are related in the given material. As the stress and strain increases
with the external force applied, the material behaviour changes. Mechanical properties are
theoretically divided into different phases based on how the material behaves. The first phase
represents elastic deformation, here the material absorbs the forces and stores them as stress and
strain. The second phase represents plastic deformation, during this phase the internal structures
of the material changes permanently. If the amount of stress and strain exceeds the point of
fracture the material will collapse. Elastic deformation is reversible, but the other deformation
types are not. [YFFS00, page 344-345]

Stress-strain Curves

To visualize how a material goes through the different types of deformation, we look at stress-strain
curves. A stress-strain curve is a graph where measurements of stress as a function of strain, are
plotted. The graph should be interpreted as follows: When moving away from origin along the
x axis, the material gets more and more stretched (or compressed) depending on the direction.
Normally the stress-strain curve only includes stretch, which is positive along the x axis. Isotopic
materials yield the same stress-strain curve in any direction, therefore only one stress-strain curve
is needed. To describe an anisotropic material more than one stress-strain curve is needed. The
stress-strain curves in figure 3.10 on the next page, show an overview of how to interpret the
curves. Figure 3.10a illustrates the different phases and figure 3.10b the names of the transition
points between the phases. The transition point between linear and non-linear elasticity is called
proportional limit. Between elastic and plastic deformation it is called yield strength, and the
material will break when reaching the fracture point. The maximum amount of stress during
plastic deformation is called the ultimate strength limit.
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(a) Phases. (b) Points.

Figure 3.10: Stress-strain curves overview.

Elastic Deformation
Elastic deformation or elasticity is the physical property of a material when it deforms due to
external forces applied, but returns to its original shape when the forces are removed. The
material returns to the original form because the applied forces are stored as stress and strain.
The relation between stress and strain under elastic deformation can be either linear, non-linear or
both depending on the material properties. Linear elasticity is when strain is directly proportional
to stress. Non-linear elasticity is when the relationship between strain and stress is more complex
and can be approximated by a non-linear function. A material with both properties is illustrated
in figure 3.11.

Figure 3.11: Stress-strain curve illustrating elastic deformation.

Elastic deformation is completely reversible. If the stress is reduced to its former value the strain
falls back to the original level [ALRA90, page 183].

Plastic Deformation
Plastic deformation, also known as plastic flow, is a irreversible deformation, which means that
the body will not return to its original configuration when the external forces are released. When
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the amount of external forces exceeds the yield strength the plastic deformation phase takes
over. Plastic deformation changes the rest shape of a material, by changing its structure at
the level of atoms. Atoms are bound in a grid structure. This grid structure is permanently
changed by dislocations along slip planes. [ALRA90, page 191-205]. An important property of
plastic deformation is that it preserves the volume of the material. An example of a plastic
deformable material is metal. If metal is bent, the material’s rest shape is permanently changed.
The stress-strain curve in figure 3.12a shows a material that has gone through linear elastic
deformation (stage 1-2), non-linear elastic deformation (stage 2-3) and plastic deformation (3 and
onwards). If at a point (4), the external forces are released, the material has obtained a permanent
deformation and therefore a new rest shape. The material returns to the new rest shape via the
dotted line. If the material is, once more, subjected to external forces, the deformation of the
material follows the dotted line until the point of yield strength is reached, and continues into
plastic deformation if enough forces are applied [Dil07, page 159].

(a) Plastic deformation. (b) Stress-strain curve of strain hardening and necking.

Figure 3.12: Stress-strain curves illustrating plastic deformation.

Plastic deformation covers many distinct physical processes. Strain hardening and necking are
both examples of physical processes which can be seen on the stress-strain curve as illustrated
in figure 3.12b. Strain hardening or work hardening is when a material becomes increasingly
saturated with dislocations. When more and more dislocations are introduced the material starts
to develop a resistance against new dislocations. This resistance shows itself as a strengthening of
the material [ALRA90, page 194]. When a material is plastic deformed, and after the material’s
ultimate strength limit has been reached necking begins. The term neck refers to a point in the
material where the material gets weaker than the rest of the material. Necking is part of the
fracturing process for soft materials like metal [ALRA90, page 223].

Fracture

If deformation exceeds the point of fracture, the material collapses hereby releasing its internally
stored forces. Material collapse, known as fracture, is a subject of its own: Fracture mechanics.
Fracture mechanics is elaborated in section 3.5 on page 34.
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Brittle and Ductile Materials

Solid materials can be categorised according to their material properties. Before reaching the
point of fracture, a material will undergo plastic deformations to some extent. If the amount of
plastic deformation in a material is almost non-existing, as in the case of glass, it is reasonable
to neglect this type of deformation. When this is the case the material is considered brittle and
the point of yield strength ≈ fracture point. Materials, like metal, where plastic deformation is
important are known as ductile materials [YFFS00, page 345].

Variations in the Material Properties

Materials can have different properties when compressed compared to when stretched. Concrete
for example, is much stronger when compressed than when stretched. Figure 3.13a illustrates this
in one stress-strain curve by using that compressive strain is negative. Here the fracture point is
much higher under compression that under stretch. The material can have a particular stress
and strain relation under compression and another when stretched, hereby yielding two different
slopes, as illustrated in figure 3.13b.

(a) Different fracture points. (b) Different slope.

Figure 3.13: Stress-strain curves of materials with different properties during compression contra
stretch.

3.4 Linear Elasticity

When modeling brittle material, only the elastic deformation of a material is of interest, and
we shall assume that the stress-strain relation is linear. Furthermore we shall assume that the
material is isotropic, i.e. that it has the same properties is all directions. Linear elasticity in
the simplest form is described by Hooke’s law of elasticity. Hooke’s law relates deformation and
external forces by stating: Extension of a material is in direct proportion with the forces acting
upon it. This is true as long as the force does not exceed the elastic proportional limit. The most
commonly encountered form of Hooke’s law is the spring equation, which relates the force exerted
by a spring to the distance it is stretched or compressed by a spring constant k measured in force
per unit length (N/m).

f = −k ·∆x (3.19)
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The negative sign indicates that the force exerted by the spring is in opposite direction of the
displacement. To extend Hooke’s Law into three dimensions we need to introduce more than one
constant which relates forces and deformation. In keeping with generally used terms in theory
of linear elasticity these constants are denoted moduli. More than one modulus enables us to
relate the degrees of freedom in three dimensions. There are many different moduli or constants
in linear elasticity but we only need two: the elastic modulus and Poisson’s ratio, and how they
relate stress and strain to cover all degrees of freedom.

Modulus of Elasticity

The elastic modulus or Young’s modulus E relates normal strain and normal stress and is defined
to be:

E = normal stress
normal strain

= σ

ε
⇔ ε = σ

E
(3.20)

The elastic modulus is material dependent and can be found in reference books like [MW05]. Seen
on a stress-strain curve a modulus is the slope of the linear piece of the graph. A high modulus
indicates a hard or stiff material whereas a low modulus indicates a soft or bendy material.

Poisson’s Ratio

When a body is stretched or compressed in one direction, it tends to contract or expand in
the opposite two directions. Poisson’s ratio ν is a direct measurement of this phenomenon for
isotropic materials. Consider a material in two dimensions, when it is compressed by a force
along the x-axis it results in the strain εx. Due to the compression the material will expand εy in
the y direction, as follows:

εy = −νεx ⇔ ν = −εx
εy

= −∆x/x
∆y/y

(3.21)

Here ν is Poisson’s ratio, relating the compression and expansion. To express this as stress, we
use equation (3.20) and get:

εy = −νεx = −ν σx
E

(3.22)

Like the elastic modulus, Poisson’s ratio can be found in reference books.

Relating Stress and Strain in Three Dimensions

To relate stress and strain in three dimensions, we need to combine the elastic modulus and
Poisson’s ratio in all dimensions. Consider a cubic element with tensile stress σx, σy and σz acting
in the x, y, and z direction, respectively. Due to the stress component, σx, the cube will stretch
(if σx > 0) in the x direction by the amount which according to equation (3.20) is εx = σx/E
and contract in the y- and z-direction by an amount of −νσx/E. Similarly for the remaining
two stress components. The total deformation of the cube is now found by adding the various
contributions [ALRA90, page 187]:
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εx = 1
E

[σx − ν (σy + σz)]

εy = 1
E

[σy − ν (σx + σz)]

εz = 1
E

[σz − ν (σx + σy)]

(3.23)

In equation (3.23) the relation between normal stress and strain are completely defined by the
two constants E and ν. These constants can also be used to relate shearing stress and strain. The
relationship between shearing stress and shearing strain is called the Shear modulus or modulus
of rigidity and is denoted G.

G = shear stress
shear strain

= τxy
γxy

⇔ γxy = τxy
G

(3.24)

The shear modulus can be deduced from E and ν as done in [TG70, page 9-10], the relation is:

G = E

2(ν + 1)
(3.25)

Shearing in one direction does not affect shear in other directions. Note that shear is independent
of normal stress and strain [Dru67, page 266]. For shear in three dimensions, the equations are
defined as:

γxy = τxy/G γyz = τyz/G γzx = τzx/G (3.26)

3.5 Fracture Mechanics

Fracture mechanics describes what happens to a material when the fracture point limit has been
exceeded. When the material reaches this limit, a fracture is initiated at a specific crack point
within the material. The fracture propagates by opening a crack inside the material along a
fracture plane. The crack can be described by connected crack surfaces. The crack opens to
release potential energy accumulated within the material. The internal potential strain energy,
is used to create new crack surfaces by ripping part of the body into surfaces. This conversion
of body to surface requires work, which is how the energy is released [ALRA90, page 218]. The
crack length is determined by the amount of internally stored energy contra how much energy it
takes to create the new surfaces. When considering an isotopic material in three dimensions, we
idealize the crack surfaces by using two surfaces, which form a lens as illustrated in figure 3.14 on
the facing page.

34



Section 3.5. Fracture Mechanics

(a) Half lens. (b) Quarter of a lens.

Figure 3.14: Two crack surfaces forming a lens.

Crack Initialization

There are different theories of how to calculate the crack initialization point, we use: maximum
principal stress since this technique has proved suitable for brittle materials [Sin08, page 370].
Principle stress is a measure where both shearing and normal stress is incorporated, yielding three
vectors. The longest vector of the three revels in which the direction the maximum stress points
in a given point within the material. The method of maximum principle finds the maximum
principle stress of all points in the material, yielding the precise point and direction of the stress.
If this stress exceeds the fracture point (σF ), the material breaks in this precises location. If
a material have different fracture point limits when stretched or compressed, they are denoted:
σ+
F and σ−F . How to calculate the principle stress based on normal and shearing stress will be

elaborated in section 4.2 on page 47, when linear transformation has been introduced. The
principle stress also contains information about how the crack surfaces will form. The vectors
direction defines the normal of the crack plane.

Crack length

The energy it takes to form the new surfaces is determined by the crack surfaces area and the
strain energy release rate, which is a material property. The length of the crack is determined by
the amount of strain energy stored in the point where the crack opens and the amount it takes
to create the crack surfaces. The amount of energy used to create a surface in a give material
depends upon the material itself and on the area of the crack surfaces. The area of the surfaces
when using the lens form is further approximated by using a circle. This is done because the
lens is much wider that thick and therefore a circle covers most of the area as illustrated in
figure 3.15 on the following page, where the crack is seen from above. The circle area is calculated
by: A = πa2.
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Figure 3.15: Crack surfaces seen from above.

The crack continues to grow until the strain energy cannot expand the crack surfaces further.
Figure 3.16a illustrates an example of this. The graph EC depicts the amount of energy it takes to
produce the crack surfaces as a function of the crack length a. The graph ES is the internal strain
energy in the body. Focusing on graph ET this graph describes the total energy (ET = EC +ES),
here the fracture point is reached at the dotted line, and a crack is initialized, hereby releasing
energy. Looking at the strain energy function ES we see that this energy rapidly increases as the
crack starts to propagate. When the ET graph crosses the x axis, there are no more energy left
and the crack propagation stops.

(a) Strain contra surface energy. (b) Derivatives of strain and surface energy.

Figure 3.16: Strain contra surface creation energy.

Figure 3.16b illustrates the energy derivatives of EC and ES from figure 3.16a. Here the point
where the strain energy exceeds the surface creation energy becomes directly apparent [ALRA90,
page 219-221]. In figure 3.16b, the following notation is used:
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dS = ∂ES
∂a

dC = ∂EC
∂a

Crack propagation
Brittle material often have a single crack propagating through the entire material [Bow09,
section 9.1]. Once the crack begin to propagate, the stress required for further propagation
decreases as a increases and therefore the crack accelerates rapidly [ALRA90, page 220].
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Mathematics

4.1 Linear Transformations

A linear transformation, or linear mapping, is a function f that maps one vector space into
another with the property that[Leo06, page 175]:

f(αx+ βy) = αf(x) + βf(y) (4.1)

where α and β are scalars. An affine transformation from a Euclidean space into another is a
mapping which preserves collinearity of points and ratios of distances between points on a straight
line. In other words, points which lie on a straight line before the transformation continue to
do so after the transformation is applied. Consider point a, b and c, the ratio |b−a||c−b| is preserved
when using affine transformations. An affine transformation can be a translation, a rotation, a
scaling, a shear or a combination hereof using matrix multiplication[WP01, page 2]. A common
form of a linear equation in two variables, x and y is

y = Ax+ b (4.2)

where A is a matrix representing rotation, scaling or shearing and b represents translation. The
set of solutions to this equation forms a straight line hence the name linear. Using homogeneous
coordinates means representing an n-dimensional vector by (n+ 1) components. This way we can
include translation in the set of affine transformations and hereby get rid of b in equation (4.2).
The following examples shows commonly used affine transformations.

Translation
Here is an example of an affine three-dimensional translation:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (4.3)

tx, ty and tz are the axial translations in the x, y, and z axis respectively. Only the rightmost
column concerns the translation as opposed to scaling, rotation and shearing where only the
upper-left 3× 3 sub-matrix defines the transformation. Any affine transformation matrix can be
applied to a vector 4× 1 vector v by using matrix multiplication v′ = T v:
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
x′

y′

z′

1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



x
y
z
1

 (4.4)

Notice that the fourth vector component has the value one since it is in homogeneous form. This
way translation can be applied using matrix multiplication instead of the standard vector addition
as shown in equation (4.2).

Scaling

This is an affine scaling matrix:

S =


Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

 (4.5)

Sx, Sy, and Sz are the scaling factors in the x, y, and z axis respectively.

Shearing

Generally shearing can be performed in an arbitrary plane. There are six basic shearing matrices
[MH02, page 31]. One for each off-diagonal component in the upper-left 3×3 matrix as illustrated
here:

H =


1 Sxy Sxz 0
Syx 1 Syz 0
Szx Szy 1 0
0 0 0 1

 (4.6)

For simplicity the following example only illustrates shearing acting in planes orthogonal to axis
of the coordinate frame. The following is an example of a shearing matrix in the xy-plane:

Hxy =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.7)

The result of applying the Hxy shearing matrix to a unit square is illustrated in figure 4.1 on the
next page.
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(a) Before (b) After

Figure 4.1: Shearing in the xy-plane applied to a unit square.

Rotation

Generally rotation can be applied around an arbitrary axis but for simplicity the examples here
are limited to rotations around the x, y, and z axis. The following three examples illustrate
counter-clockwise rotation θ degrees around the x, y, and z axis respectively:

Rx =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 (4.8)

Ry =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

 (4.9)

Rz =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 (4.10)

Constructing an affine rotation matrix requires certain matrix properties. To ensure preservation
of collinearity and ratio of distances between points along lines the rotation matrix must be an
orthogonal matrix. An orthogonal rotation matrix is by definition a square matrix with rows (or
columns) that form an orthonormal basis [Leo06, page 258]. An orthonormal basis is a set of
mutually perpendicular vectors all of magnitude one [Leo06, page 255] as illustrated in figure 4.2
on the following page.
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Figure 4.2: An orthonormal basis.

The determinant of any orthogonal matrix is either +1 or −1. If the determinant equals −1 it
forms a reflection matrix rather than a rotation matrix. If the determinant of the orthogonal
matrix equals 1 it forms a rotation matrix and these are the ones we are interested in. A rotation
matrix has the following useful properties:

• Columns (or rows) are orthogonal unit vectors.

• The transpose equals the inverse:

AAT = ATA = A−1A = I (4.11)

• The determinant equals +1.

• Closed under multiplication and the inverse operation.

The fact that the inverse of a rotation matrix is the same as the transpose is very useful. The
transpose of a matrix can be found just by swapping rows with columns, whereas finding the
inverse usually means solving a system of linear equations using Gaussian elimination or another
solving technique, so generally transposing a matrix is computationally much faster.

4.2 Tensors

Tensors are a powerful abstraction proven very useful especially in physics and engineering.
Because of its abstractness it is not an easy entity to describe. A tensor is a way of describing
linear transformations according to certain rules. A tensor is in fact just a linear function, but in
applied mathematics it sometimes seems like a “magic” entity.

The use of tensors are probably best motivated through an example. Consider the life of a pirate
sailing on the ocean only powered by the wind. Dependent on the weather conditions the wind
will have a certain speed and come from a certain direction. Wind could easily be represented as
a vector v where the magnitude of the vector represents the wind speed. When the wind hits the
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sail it produces a force that will make the ship move. If the ship was always sailing in the same
direction as the wind we could just represent the relation between wind and force with a simple
scalar. The resulting force vector could simply be obtained by multiplying the wind vector with
the scalar. You don’t have to be a sailor to see that if the ship could only move in the direction of
the wind only random sailing would be possible. Sailing is more complicated in real life. We need
to represent the relation between wind and resulting force in a different way. We shall assume
that this relation is linear, so doubling the wind speed will double the force. We could represent
this linear relation between the wind and the force on matrix form:

T =
[
τ11 τ12
τ21 τ22

]
(4.12)

Here T is an example of a tensor capable of relating two different quantities, one is the wind
speed and direction the other is the force direction and magnitude. The resulting force could be
expressed as:

f = T · w (4.13)
where T is the tensor, w and f is the wind and force vector, respectively.

Figure 4.3: Wind from behind hits the sail and produces force.

As illustrated on figure 4.3 the pirate ship with its sail set, is going in a direction say 45◦ to the
right of the wind direction. We represent the wind direction and speed as w = [1, 1]T hereby
setting the wind speed to the length of the vector which equals

√
2. Lets say each wind speed unit

produces two force units. A tensor representing this linear relation in direction and magnitude
can be written in matrix form:

T =
[
2 · (cos θ) 2 · (− sin θ)
2 · (sin θ) 2 · (cos θ)

]
(4.14)

where θ defines the angle the vector will be rotated. The force produced by the wind can be
obtained by:

f =
[
2 · (cos 45) 2 · (− sin 45)
2 · (sin 45) 2 · (cos 45)

] [
1
1

]
=
[

0
2.828

]
(4.15)
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Using tensor algebra we can begin to see why these abstract tensor entities are powerful. In the
example we did only have one linear relation between wind and force, so we did only represent
a single sail. A pirate ship probably has many sails with different size hence different linear
relations between wind and force. The total force when three sails are set is obtained by:

f = R · w + S · w + T · w (4.16)

where w is the wind and R, S, and T are the three tensors each representing a linear relation
between wind and force produced. Since wind with its direction and speed is constant equation
(4.16) can be written as:

f = (R+ S + T ) · w (4.17)

Due to the fact that R, S, and T are on matrix form and are linear they can be combined to
form a new tensor U :

U = R+ S + T (4.18)

f = U · w (4.19)

Tensors are all about linear relations. Tensors of different orders exist we will classify tensors
according to their order. All tensors can be represented by n-dimensional arrays where n equals
the tensor order. The number of indices needed to address each individual element in a tensor
corresponds to the order. A scalar needs zero indices, a vector needs one, a matrix needs two etc.

A zero order tensor is simply a scalar and can be represented by a zero dimensional array e.g.
just a single value. This scalar could represent the mass of a particle or the volume of an object.
An example of a scalar could be the density of some fluid as a function of the position.

A first order tensor can be represented as a vector. Just like tensors a vector may be defined
at a single point, or it may continuously vary from point to point hereby defining a vector field.
Imagine how to model speed and direction of fluid through space. Each vector in the field has
a direction and magnitude representing movement and speed respectively. In three dimensions
a vector has three components, in four dimensions it has four, in n-dimensional space it has n
components still representable as a first order tensor.

A second order tensor can be represented by a two-dimensional array, written out as a matrix. In
three dimensions a second order tensor can be represented by a 3× 3 matrix defining e.g. body
stretch and rotation. If multiplying a vector by a second order tensor, the result is another vector
by definition, so a second order tensor is a linear mapping of a vector onto another vector as in
the example with the pirate ship. Second order tensors are very useful for describing movement
and deformation of volumetric models. In continuum mechanics stress and strain are often best
represented by second order tensors.

Tensors of all orders can be defined but as the order of the tensor increases so does the complexity.
We will limit our discussion to second order tensors in three-dimensional space.

Before introducing an actual tensor definition it would be appropriate to introduce some basic
terminology. Throughout the discussion second order tensors will be represented in the Cartesian
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coordinate frame spanned by orthonormal vectors ei, where i ε {1, 2, 3}. A vector u in this frame
is given by

u =
3∑
i=1

uiei (4.20)

Vector u represented in the Cartesian coordinate frame is illustrated in figure 4.4.

Figure 4.4: Vector u in coordinate frame spanned by ei, where i ε {1, 2, 3}.

In vector and especially tensor literature a special index notation if often used. If an index is
repeated in a product of vectors or tensors, summation is implied over the repeated index. This
is also known as the Einstein Convention and means the following is equivalent

δ = aibi ≡ δ =
3∑
i=1

aibi ≡ δ = a1b1 + a2b2 + a3b3 (4.21)

Definition 5. An entity is called a second-order tensor if it has nine components Tij , i ε {1, 2, 3},
and j ε {1, 2, 3}, in the unprimed frame and nine components T ′ij in the primed frame and if
these components are related by the characteristic law, defined by:

T ′ij = PilPjmTlm (4.22)

A tensor is defined as an entity, with components represented in a chosen coordinate frame, that
can be represented in a different coordinate frame, related by the characteristic law.

It follows from definition 5 that if a tensor equation can be established in one coordinate frame
then it must hold in any other coordinate frame [Bat07, page 502]. The components of a tensor
changes if the coordinate frame changes. The characteristic law is what relates the representation
in one coordinate frame to another and it can also be expressed on matrix form as:

T ′ = P T PT (4.23)
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where P is the rotation matrix representing the change of basis from the primed to the unprimed
coordinate frame. The tensor T is represented in the unprimed coordinate frame and PT is
the inverse rotation representing the change of bases from the primed back to the unprimed
coordinate frame. T ′ is the representation of the tensor in the primed coordinate frame.

Since P is an orthogonal transformation matrix defining a rotation, the inverse of the transforma-
tion equals its transposed matrix PT as defined equation (4.11). So the stress tensor represented
in the unprimed coordinate frame can be obtained by:

T = PT T ′ P (4.24)
According to definition 5 on the preceding page any tensor can be represented in a coordinate
frame different from the initial coordinate frame.

(a) Initial unprimed coordinate frame (b) Rotated primed coordinate frame

Figure 4.5: Transformation of tensor from unprimed to primed coordinate frame.

In addition to the unprimed frame, in figure 4.5a, consider a primed coordinate frame. The
primed coordinate frame spans the same vector space as the unprimed but with different basis
vectors e′j where j ε {1, 2, 3} as shown in figure 4.5b. Now consider any tensor T represented in
the unprimed coordinate frame. The tensor T can be represented in the primed coordinate frame
as illustrated in figure 4.5b through the relation defined in equation (4.23), on matrix form this
expands to:T ′11 T ′12 T ′13

T ′21 T ′22 T ′23
T ′31 T ′32 T ′33

 =

P11 P12 P13
P21 P22 P23
P31 P32 P33

T11 T12 T13
T21 T22 T23
T31 T32 T33

P11 P21 P31
P12 P22 P32
P13 P23 P33

 (4.25)

The diagonal elements of T ′ represents the scale along the axis of the primed coordinate frame
and the off-diagonal elements represents shearing.

Strain Tensors
As already explained in section 3.2 on page 25 strain represents the amount of stretch or
compression by the relative distance between two particles in the material body. Strain is a
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dimensionless quantity which can be decomposed into normal and shearing strain. Normal and
shearing strain can be represented by a second order tensor. Normal strain is the axial stretch
or compression represented down the diagonal as if it was a scaling matrix. Shearing strain is
represented in the off-diagonal components. Altogether we need six components to represent the
entire strain measure, three normal strains and three shearing strains. As defined in equation
(3.9) on page 25 normal strains are obtained by:

εx = ∂ux
∂x

εy = ∂uy
∂y

εz = ∂uz
∂z

and the three shearing strain, one for each angle between two planes are defined in equation
(3.11):

γxy = ∂ux
∂y

+ ∂uy
∂x

γxz = ∂ux
∂z

+ ∂uz
∂x

γyz = ∂uy
∂z

+ ∂uz
∂y

Normal and shearing strain can be represented as a second order tensor:

EE =

 εx γxy γxz
γyx εy γyz
γzx γzy εz

 (4.26)

Stress Tensors

In continuum mechanics tensors are very useful for representing e.g. stress. As already explained
in section 3.2 on page 27 stress can be decomposed into normal (σ) and shearing stress (τ). In
three dimensions the stress at any point in the continuum can be completely defined by the stress
tensor:

SE =

σx τxy τxz
τyx σy τyz
τzx τzy σz

 (4.27)

where the three σ components defines the normal stress and the six τ defines the shearing stress.
Recall from section 3.2 on page 27 that since τxy = τyx, τyz = τzy, and τzx = τxz the tensor
becomes symmetric.

Principal Values and Directions

It is often of our interest to determine the directions of the resulting strains also known as the
principal directions. The sizes of the resulting strains acting in the principal directions are known
as the principal values. Consider a strain tensor EE defining normal and shearing strain. When
the tensor is represented on matrix form we recognize the normal strain in the axial directions
down the diagonal just like a scaling matrix. The shearing is represented as the off-diagonal
components introducing rotation capabilities into the matrix. Together the normal and shearing
strain forms a transformation matrix mapping vectors from an unprimed to a primed coordinate
frame. The base vectors spanning the primed vector space is exactly the principle directions we
are interested in. Rotating the unprimed coordinate frame until its base vectors aligns with the
base vectors of the primed coordinate frame, will effectively eliminate the rotation. The result
from applying normal and shearing strain can hereby be represented combined as normal strain
in the directions of the primed coordinate frame as illustrated in figure 4.6 on the next page.
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(a) Unprimed coordinate frame with shearing strain. (b) Primed coordinate frame with normal strain.

Figure 4.6: Shearing strain represented as normal strain.

The base vectors of the primed coordinate frame defines the principal directions. The principal
values defines the magnitude of the normal strains that act in the principal directions. The
solution to the problem of finding the principal directions and values is equivalent to the solution
of the eigenproblem as explained in section 4.3. The eigenvectors of any symmetric tensor T is by
definition three mutually perpendicular vectors. The eigenvectors defines the principal directions
and the corresponding eigenvalues defines the principal values [Bat07, page 838]. The three
eigenvectors are often referred to as the minimum, medium and maximum principal directions
according to the size of their corresponding eigenvalues.

4.3 The Matrix Eigenproblem

Solving the matrix eigenproblem means finding eigenvalues and their corresponding eigenvectors
for a given matrix. Finding the eigenvalues and eigenvectors reduces to the solution of linear
equations [Leo06] as defined below

Definition 6. Let A be an n× n matrix. A scalar λ is said to be an eigenvalue or a charac-
teristic value of A if there exists a nonzero vector v such that Av = λv. The vector v is said
to be an eigenvector or a characteristic vector belonging to λ.

The equation Av = λv can also be written as

(A− λI)v = 0 (4.28)

According to definition 6 λ is an eigenvalue of A if and only if the corresponding vector v is
nonzero. Equation (4.28) has a nonzero solution of v if and only if det(A− λI) = 0 is satisfied,
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this equation is also known as the characteristic equation for matrix A.

Expanding the determinant leaves us with an polynomial of n-degree for the λ term. This
polynomial is also known as the characteristic polynomial. The characteristic polynomial will
have exactly n roots being the eigenvalues from which we can find n independent eigenvectors.

Example
Consider a matrix A defined to be:

A =
[

1 1
−2 4

]
Finding the eigenvalues and eigenvectors means solving equation (4.28). By insertion we obtain:

(A− λI)v =
[

1 1
−2 4

] [
x1
x2

]
−
[
λ 0
0 λ

] [
x1
x2

]
=
[
0
0

]
which is equivalent to:

(1− λ)x1 + x2 = 0 (4.29)
(4− λ)x2 − 2x1 = 0 (4.30)

With only two equations and three unknowns a third condition is needed. As previously stated λ
is an eigenvalue of matrix A if and only if vector v has a nonzero solution. If matrix A is singular
the equation (4.28) will have a nontrivial solution. From the characteristic polynomial we obtain
a third condition:

det(A− λI) = det

(
1− λ 1
−2 4− λ

)
= 0 (4.31)

which expands to:

(1− λ)(4− λ) + 2 = 6− 5λ+ λ2 = (λ− 3)(λ− 2) = 0 (4.32)

Obvious λ = 2 and λ = 3 is a valid solution here. Standard techniques for finding roots in a given
polynomial exists. Having established the two eigenvalues we still need to find their corresponding
and independent eigenvectors satisfying the equation Av = λv. By inserting λ = 2 into equation
(4.29) and (4.30) we obtain:

−x1 + x2 = 0 (4.33)
−2x1 + 2x2 = 0 (4.34)

By looking at the coefficients and signs of the vector components x1 and x2 we see that the
equation is satisfied with the base solution:[

x1
x2

]
=
[
1
1

]
(4.35)

Any non-zero multiple of [1, 1]T is an eigenvector belonging to λ = 2. Eigenvector [1, 1]T is said
to be a basis for the eigenspace corresponding to λ = 2. A scalar λ with corresponding vector v
satisfying Av = λv defines an eigenpair.
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The second independent eigenvector corresponding to λ = 3 is found just like before through
insertion of λ = 3 into equation (4.29) and (4.30) hereby obtaining:

−2x1 + x2 = 0 (4.36)
−2x1 + x2 = 0 (4.37)

in order to satisfy the equation the solution must be:[
x1
x2

]
=
[
1
2

]
(4.38)

We have now solved the eigenproblem for matrix A by finding the two eigenvalues and their
corresponding eigenvectors. The solution written as eigenpairs:

(2,
(

1
1

)
), (3,

(
1
2

)
) (4.39)

Due to the fact that any second order tensor can be represented on matrix form, the eigenproblem
can be solved for second order tensors by a similar approach to the one just shown. More general
techniques for solving the eigenproblem exists but will not be further discussed here.
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Chapter 5

The Equilibrium Framework

Equilibrium problems is the set of problems where the mathematical model describes conservation
of something. It could be conservation of mass in fluids, conservation of current in electrical
circuits, conservation of energy in solid mechanics, conservation of momentum in physics etc.
Whenever the mathematical model describes a problem that involves an external conservation
law, the particular problem is within the set of equilibrium problems. In the following discussion
we will try to establish a fundamental framework for solving equilibrium problems.

A steady state problem, also known as a static problem, is a problem where only two configurations
exists. The first one is the initial configuration describing the state of the system. If the problem
is within the field of mechanics, the initial configuration will describe the systems masses, external
loads, connecting springs and so forth. Finding the equations describing the behavior of the
system, is also part of the initial configuration. Without introducing time, the system will react
to the applied loads, springs will stretch etc., and eventually the system will reach its final state
of equilibrium where everything stops moving, this is the second configuration.

5.1 The Structure of the Framework

The following discussion is limited to a one-dimensional steady state problem with masses con-
nected by springs. This simple problem is one of the most basic problems in mechanics, yet
it illustrates the general structure of the framework. The framework we are about to describe
generalizes to all kinds of problems within the field of applied mathematics in n dimensions.

Consider figure 5.1 on the following page. Three masses are connected by four springs. The top and
bottom spring are fixed at one of their end points. This is the initial configuration. Gravity will
pull down the masses forcing the springs to stretch or be compressed. Eventually the system will
stop moving and hereby reach its final configuration. Equations describing the physical laws and
the connection between forces acting and springs reacting to this, is exactly what we will try to find.
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Figure 5.1: Basic spring mass problem.

Let’s start by labeling the various quantities acting in the system. The three masses are repre-
sented by m1, m2, and m3. The masses are connected by spring s1, s2, s3, and s4. Gravity g acts
on each mass hereby defining the external forces f1, f2, and f3, defined to be positive downwards.
The displacement of the masses, due to the forces acting on them, is represented by u1, u2, and u3.

When the gravitational force acts on the masses it causes each separate spring to react. The
internal spring forces are represented by w1, w2, w3, and w4. A positive wi value is defined to be
stretch and a negative value is compression. For each spring we define a connecting quantity e1,
e2, e3 and e4 one for each elongation of the spring.

By using vectors to represent each of the quantities u, e, w and f we can describe the problem
by relating these as follows:

• There will be a matrix A relating the displacement vector u to a elongation vector e.

• There will be a matrix C relating the elongation vector e to a spring force vector w.

• There will be a matrix relating the spring force vector w to the external force vector f .
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Figure 5.2: The structure of the framework.

Figure 5.2 illustrates how the different quantities can be related by matrices. This is what forms
the significant structure of the framework used all over the field of applied mathematics. We are
about to describe the fundamental framework for equilibrium steady state problems.

Relating Displacements to Elongations

We will begin by constructing matrix A. This is the question of how much the springs stretch
due to the displacement u. As seen on figure 5.1 on the facing page there are four springs and
three mass displacements. The relation between the two quantities written on matrix form is:

e = A u (5.1)

where vector e equals [e1, e2, e3, e4]T , vector u equals [u1, u2, u3]T and A is the matrix relating
the two quantities. The first spring s1 stretches by the amount equal to the displacement of the
first mass. So e1 = u1 because the spring is fixed at the top. The spring being fixed at one end
introduces the first boundary condition. Later it will become clear why boundary conditions,
limiting the solution space, are an important part of the framework. The elongation of the second
spring equals the displacement u2 subtracted by u1 because we are only interested in the stretching
of s2. Looking at the third spring we isolate it by subtracting the springs already stretched
above therefore e3 = u3 − u2. The last spring s4 is fixed at its end point causing it to compress
since it can not move further downwards. The amount it is being compressed must be equal
to the displacement of the last mass, note the negative sign due to compression, therefore e4 = −u3.

The equations are:

e1 = u1

e2 = u2 − u1

e3 = u3 − u2

e4 = −u3

Written out in matrix form a certain pattern emerges
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
e1
e2
e3
e4

 =


1 0 0
−1 1 0

0 −1 1
0 0 −1


u1
u2
u3

 (5.2)

As we shall see later, matrix A contains information about the boundary conditions. In this exam-
ple the boundary conditions are the two fixed springs, the one at the top and the one at the bottom.

Relating Elongations to Spring Forces

We will now determine matrix C. Matrix C is the one that relates the distances the springs have
stretched to the internal spring forces w. Relating spring extension to a force is exactly what
Hooke’s law does. Hooke’s law as defined in equation (3.19) on page 32:

f = −k ∆x

where ∆x is the distance the spring has been stretched or compressed. f is the restoring force
and k is the spring constant defining units of force it takes to stretch or compress the spring one
unit length. The relation between the internal spring forces w and the spring elongation e is
written as:

w = C e (5.3)

where vector w equals [w1, w2, w3, w4]T , vector e equals [e1, e2, e3, e4]T and C is the 4× 4 matrix
relating the two quantities. Using Hooke’s law we need to define a spring constant. When the
spring constant is multiplied with the stretch e the internal force w are obtained. For each spring
we define a spring constants c1, c2, c3 and c4. The internal spring forces is then obtained by:

w1 = c1e1

w2 = c2e2

w3 = c3e3

w4 = c4e4

Equation (5.3) written on matrix form:


w1
w2
w3
w4

 =


c1

c2
c3

c4



e1
e2
e3
e4

 (5.4)

where 0 is implied in all the blank entries of the 4× 4 matrix C. Note how we just introduced an
external law from the world of physics into the framework. The physical law was here introduced
as a relation between two quantities in the framework.
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Relating Spring Forces to External Forces
The last relation that will take us all the way around the framework is the one between the
internal forces w and the external forces f . This is where the state of equilibrium is represented
by a key equation, in this case the equation describes the conservation of forces as described by
definition 2 on page 19.

We need to find the relation between the internal and external forces. When the system has
reached its state of equilibrium all springs and masses have stopped moving, therefore the internal
and external forces must cancel out. The only external force in this system is the gravity acting
on each of the three masses, obtained by:

fi = mi g (5.5)

where g is the gravity and i ε {1, 2, 3}.

Consider figure 5.1 on page 56 and look at the first internal force w1 defined at spring s1. When
the system is in a state of equilibrium w1 must cancel out the forces pulling down mass m1. There
are two forces pulling down mass m1, the first one is f1 as defined in equation (5.5). The second
one is all the other masses below which equals whatever spring s2 is holding defined by w2. The
first internal force w1 is obtained by:

w1 = f1 + w2 (5.6)

which can be written as w1 − w2 = f1. Now consider the internal force w2, both f2 and w3 act
downwards, therefore w2 must equal the sum of the contributions: w2 = f2 + w3. The three
relations between the internal forces and the external forces is obtained by:

w1 − w2 = f1

w2 − w3 = f2

w3 − w4 = f3

On matrix form these relations can be expressed as:

f1f2
f3

 =

 1 −1 0 0
0 1 −1 0
0 0 1 −1



w1
w2
w3
w4

 (5.7)

This is the crucial moment where we realize that the matrix relating the internal forces w to the
external forces f is exactly AT - and it always is. No matter what kind of equilibrium problem
we are trying to solve the structure as illustrated in figure 5.2 on page 57 always appears.

"Nature produced AT there - we just sort of watched it happen." (Gilbert Strang)

The fact that the relation between internal forces w and external forces f is the transpose of the
relation between the displacements u and the elongation e is not by accident. What it means is:
the change in internal stored energy when stretching the springs equals the amount of external
work done at the masses (equation (3.6) on page 22).
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5.2 Assembling the Equations

The equation e = A u formed matrix A and the equation f = ATw formed AT . These two
matrices appears from the geometry expressing how things are connected, how mass m1 is
connected to mass m2 and so forth. There is always a matrix C in the middle that represents the
laws of physics or engineering, statistics or some other external law depending on the problem
domain.

In this case the three equations that took us around the framework were:

e = A u (5.8)

w = C e (5.9)

f = ATw (5.10)

By substitution we can assemble the three equations and hereby obtain a single expression that
connects forces f and displacements u:

f = ATCA u (5.11)

The product of ATCA is what relates the input forces to the resulting displacements. Figure 5.3
illustrates the framework with the relations we have obtained.

Figure 5.3: The framework with relations connecting each quantity.

Calculating the product of ATCA will lead to a special matrix. From the spring and mass example
the following matrices were obtained:

AT =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 A =


1 0 0
−1 1 0

0 −1 1
0 0 −1

 C =


c1

c2
c3

c4


Multiplying the 3× 4 matrix AT by the 4× 4 matrix C and then multiplying the result by the
4× 3 matrix A equals a 3× 3 matrix:
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 1 −1 0 0
0 1 −1 0
0 0 1 −1



c1

c2
c3

c4




1 0 0
−1 1 0

0 −1 1
0 0 −1

 =

c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4



5.3 The Stiffness Matrix

The matrix ATCA represents the connections and their properties in the system. In the domain
of solid mechanics matrix ATCA is also known as the stiffness matrix. The stiffness matrix K
with spring constant ci = 1 corresponding to the system as illustrated in figure 5.1 on page 56 is
obtained by:

K =

c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4

 =

 2 −1 0
−1 2 −1

0 −1 2


Positive Definite Stiffness Matrix
The resulting matrix K has some interesting properties. First of all it is invertible. Remember it is
the matrix that relates the displacement to the forces so physically it should be invertible because
the system is well defined, so if the forces were known we could determine the displacements and
the other way around. Secondly it is positive definite defined by [Str86, page 18]:

Definition 7. A is positive definite if f = xTAx is always positive (for x 6= 0)

where A is a matrix and x is a vector. In our case we are interested in showing that the stiffness
matrix K, where K = ATCA, is positive definite, this can be expressed as:

xTATCA x > 0 (5.12)

To prove that it is positive definite consider equation (5.12). Vector x can be any vector so if it
equals the displacement vector u we obtain A u which equals e as defined in equation (5.8). The
transpose of A x is xTAT so equation (5.12) can also be written as:

eTC e > 0 (5.13)

By taking the product of eTC e we obtain:

[
e1 e2 e3 e4

] 
c1

c2
c3

c4



e1
e2
e3
e4

 =
[
c1e

2
1 + c2e

2
2 + c3e

2
3 + c4e

2
4
]

due to the square of e the equation always comes out positive as long as the spring constants
are positive (which they are by definition). The potential energy in a spring can be obtained by
[YFFS00, page 175]:

EU = 1
2
k∆x2 (5.14)

where k is the spring constant (ci) and ∆x is the stretch (ei), multiplying equation (5.13) by 1
2

we realise that the following is an expression of the potential energy in the springs
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1
2
c1e

2
1 + 1

2
c2e

2
2 + 1

2
c3e

2
3 + 1

2
c4e

2
4 = 1

2
eTCe (5.15)

Not only did we prove ATCA to be positive definite, A x = 0 only in the case where x = 0, we
also showed that this equation is the relation between forces f and displacements u, this leads to
the important point that whenever there is movement, the potential energy is positive. A x = 0
only in the case where x = 0 so when there is no movement (x = 0), which is the case in the
initial configuration, the potential energy equals 0.

Positive Semi-definite Stiffness Matrix
The expression ATCA took us around the framework, in this case it represents an energy and was
proved positive definite. The matrix A and its transpose was constructed from the geometry of
the problem. To see why the stiffness matrix K has to be positive definite consider the stiffness
matrix of the system illustrated in figure 5.4. Here we have three masses (n = 3) connected by
two springs (m = 2). None of the springs are fixed so there are no boundary conditions.

Figure 5.4: Spring mass problem without boundary conditions.

Recall how matrix A was constructed, it is going to be a n × m matrix where the first row
represents the stretching in the first spring. Matrix A for this problem becomes:

A =
[
−1 1 0

0 −1 1

]
The stiffness matrix K = ATCA with each spring constant equal to 1 is obtained by

K =

−1 0
1 −1
0 1




1
1

1
1

[−1 1 0
0 −1 1

]
=

 1 −1 0
−1 2 −1

0 −1 1


Here matrix K is only semi-positive definite which means

xTATCA x ≥ 0 (5.16)
where x is any non-zero vector. So for instance
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 1 −1 0
−1 2 −1

0 −1 1

1
1
1

 =

0
0
0


so clearly matrix K can take a non-zero vector to the null space. In this case it goes for all
multiples of the vector [1, 1, 1]T . Assume that vector x is equal the displacement vector u, we
are free to move all masses arbitrarily by the same amount, up or down, without causing any
change in the potential energy. This is an example of a system that is not well defined due to the
missing boundary conditions.

Describing the element connections, finding the equations and setting up the structure of the
framework as explained here, is exactly what the finite element method is all about. The finite
element method is one of the most powerful methods for conducting structural analysis. It is
used not just in mechanics but all over the field of applied mathematics.

63





Chapter 6

The Finite Element Method

The finite element method (FEM) is a numerical analysis tool used for calculating approximate
solutions and is employed to find solutions to a wide variety of different engineering and physics
problems. The method, which is diverse and flexible, can be applied to complex problems where
analytical solutions seldom exist or are to "expensive" to solve. As this is precisely the case
with many problems in the broad field of continuum mechanics, where the complex shape of
a continuum needs to be approximated, the method is used extensively within this field. The
finite element method envisions the continuum body or solution region as an assembly of many
small, interconnected subregions (elements), the same way continuum mechanics does. In the
finite element method the size and number of the elements are finite in contrast to continuum
theory, where the subregions are considered infinitesimal. A finite element model of a given
problem is a piecewise approximation to the continuum body. That is: The basic premise of
the finite element method is that the solution region can be approximated by an assemblage of
discrete finite elements. Because the elements can have different shapes and can be assembled in
a many ways, they can be used to approximate exceedingly complex geometrical shapes [HDSB01,
page 3-5].

6.1 Basic Concepts and Fundamentals

When dealing with a continuum problem in any dimension the field variable or nodal variable
is the unknown value that we are trying to find. Examples of field variables include: pressure,
temperature, displacement, etc. and they can be either scalars, vectors, or higher-order tensors.
Field variables capture infinitely many values because they are a continuous function over the
continuum body. Therefore the problem has an infinite number of unknowns. The finite element
discretization reduces the problem to one with a finite number of unknowns, this is done by
dividing the continuum body into elements and expressing the unknown field variable in terms of
approximation functions within each element. The approximation functions, also called shape
functions, basis functions, or interpolation functions, are defined in terms of the field variable
value at specified points in the body called nodes or nodal points. Nodes are usually located where
adjacent elements are connected (element boundaries). In addition to the nodes located on the
element boundaries, the element may also have other nodes. We distinguish between two different
kinds of nodes: Nodes are called exterior nodes if they lie on the element boundary and interior
nodes otherwise. To completely define the behaviour of the field variable within an element, the
nodal values of the field variable and the interpolation functions for the element are used. But
because we want to find this field variable the nodal values of the field variables become the
unknowns. Once we have found the unknowns, the interpolation functions define the field variable
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continuously throughout all elements. Clearly the precision of the approximation depends both
on the size and number of elements and on the interpolation functions. As one would expect, we
cannot choose the interpolation functions arbitrarily, certain compatibility conditions must be
satisfied. Often the functions are chosen so the field variables or their derivatives are continuous
across adjoining element boundaries hereby meeting the compatibility conditions, which is exactly
what we will do. The most important feature of the finite element method, which distinguishes it
from other numerical methods, is its ability to formulate solutions for individual elements before
assembling these to represent the entire problem. This means that if we are analysing a problem
like, for example, the one in chapter 5 on page 55 relating external forces to elongation of the
springs, we first concentrate on modeling the problem for a single element, and then assemble
these to model the entire problem. In essence, a complex problem is reduced to a series of greatly
simplified ones. [HDSB01, page 5-6].

6.2 Constructing and Solving the Model

Solving a continuum problem via the finite element method always follows an orderly step-by-step
procedure. In general this procedure can be summarized into a list of steps one must perform to
construct and evaluate a problem. This list is shown below. In the following subsections, each of
the steps will be carefully explained and in chapter 7 on page 83, we will go through how our
model has been constructed using the same stepwise approach [HDSB01, page 7-8].

• Discretize the solution region

• Select interpolation function

• Find element properties

• Assemble the element properties to obtain the system equations

• Impose boundary conditions

• Solve the system equations

• Make additional computations

Note that some of these steps, like "Find element properties" and "Assemble the Element properties
to obtain the system equation" essentially covers the same thing as the equilibrium framework
discussed in chapter 5 on page 55. In this section we use a more structured approach for
constructing and solving the system. Furthermore: We will adapt a more abstract view of what
an element is and describe in detail how the interpolation functions work.

6.3 Discretize the Solution Region

Because the finite element method envisions the solution region as built up of many small elements
the first step is to divide this region into elements. In chapter 5 on page 55, when we considered the
equilibrium framework, our idea of what an element is was directly linked to physical phenomena
of the problem. We imagined the elements to be individual segments or parts of the actual system,
that is: A physical thing as for example a spring has a one to one correspondence to an element.
In this case the nodes belonging to an element were part of the element itself and because the
unknown field variable was displacement the nodes could move as the element deformed. We want
to think of elements in less physical terms and instead use a more mathematical interpretation
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of the concept. So instead of viewing an element as a physical part of the system, we think
of it as a part of the solution domain. We imagine the solution domain as being divided into
subregions sectioned by lines or planes. If the solution domain has curved boundaries, the curves
are approximated by a series of straight line or flat plane segments. These lines or planes define
the boundaries between elements and the elements are only interconnected at imaginary node
points on the boundaries. In this way the solution domain is discretized into a patchwork of
elements, as illustrated in figure 6.1 for a two-dimensional body.

Figure 6.1: A discretized two-dimensional solution domain.

Mathematically a finite element mesh is interpreted as a spatial subdivision [HDSB01, page 86-87].
In one dimension the element covers a distance, in two the element covers an area and in three
dimensions it is a volume. Depending on the number of spatial dimensions of the solution domain
the elements have different characteristics. In one-dimensional space the most common element
has two nodes which are connected by a line. This element type is called a bar, a truss or a
beam element and is illustrated in figure 6.2a. So the simplest element in two dimensions, one
that covers an area, is the three-node triangular element and in three dimensions the four-node
tetrahedron as shown in figure 6.2b and figure 6.2c, respectively. The element types are denoted
by how many nodal points they have. Note that the number of nodes has nothing to do with
the element’s geometrical shape, but is chosen because of other considerations (e.g. type of
interpolation functions).

(a) Two-node line ele-
ment.

(b) Three-node triangle
element.

(c) Four-node tetrahedral
element.

Figure 6.2: Simplest element types in one, two, and three dimensions.
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When considering more than one dimension the range of different element types to choose from
becomes larger. To get an idea of the range we show various kinds of two-dimensional elements
with different shape and number of nodes. Figure 6.3 illustrates quadratic elements and figure 6.4
triangular elements.

(a) Four-node rectangle element. (b) Four-node quadrilateral ele-
ment.

Figure 6.3: Examples of two-dimensional elements.

In addition to the shape, two other features characterizes a particular element type:

• The number of nodes assigned to the element

• The number and type of nodal variables chosen for it.

The number and type of nodal variables assigned to an element are called the elements degree
of freedom (DOF). If for example we have a three-node element, where a two-dimensional
displacement vector are the nodal variable, then the element have six degrees of freedom. The
degrees of freedom for an element is the same as the number of independent variables [HDSB01,
page 144].

(a) Three-node triangle
element.

(b) Six-node triangle ele-
ment.

(c) Ten-node triangle ele-
ment.

Figure 6.4: Examples of members from the triangular element family.

Element types with the same shape but with different number of nodes are called an element
family. An example of members from the triangular family is the three-node, six-node and
ten-node triangular elements as shown in figure 6.4a, 6.4b, and 6.4c respectively. Note that the
ten-node triangular element is an example of an element with one interior node.
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By increasing the number of nodes in an element, the degrees of freedom increases hereby
facilitating more complex interpolation functions. The nodal variables can be use to express
non-linear interpolation functions. Consider using a two-node line element as the element type.
The line with its two nodes have two nodal variables which can express a 1st order polynomial
equal to a linear interpolation:

P (x) = ax+ b

if we increase the number of nodes in the element by inserting an extra node on the midpoint
of the line we get three nodal variables and can now use a 2nd order polynomial to express a
non-linear interpolation:

P (x) = ax2 + bx+ c

As the number of element nodes increases so does the order of the polynomial we use as the
interpolation functions. Higher order interpolation functions gives more control over how the
interpolation functions acts inside an element. But the interpolation functions must have conver-
gence at the element boundaries hereby satisfying the compatibility conditions, and although we
choose a higher order polynomial the interpolation functions are only continuous across element
boundaries but not differentiable. The consequences of using a higher order interpolation functions
with more nodes at each element is that the per element calculations get more complex and more
time consuming. Instead of increasing the number of nodes for each element it is also an option
to increase the number of elements, hereby approximating complex interpolation functions with
more elements. Whether to choose fever elements and high order interpolation functions or more
elements is up for discussion. Higher order polynomials as interpolation functions are further
discussed in [HDSB01, page 144-146]. We chose the simplest of the two, that is we stick to 1st
order polynomials for each element in a high resolution mesh.

In three-dimensional space the range of element types becomes even larger and mixed with the
fact that element boundaries can be curved, called ISO-parametric elements, this gives endless
possibilities for combinations. In figure 6.5 some examples of three-dimensional elements are
shown.

(a) Prism. (b) General hexahedron. (c) ISO-parametric hexahedron.

Figure 6.5: Examples of three-dimensional elements.

When assembling the elements to cover the solution region, different shape and mixed types of
elements may be used. As this further increases the complexity of the governing equations we
will stick to one element type.
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Element and Node Numbering

The elements share nodes therefore the logistics of keeping track of which nodes belong to a
specific element and in which order the nodes should be used becomes a challenge. To keep track
of this the common thing to do is to make a table containing the information. This table is called
an element table an it relates element numbers and local node numbers to global node numbers. As
this is best illustrated though an example, figure 6.6 shows a domain discretized into triangular
elements, and table 6.1 the associated element table [BR98, page 15-16].

Figure 6.6: Global and local node numbering of domain discretized into triangular elements.

n 1 2 3
e1 4 1 5
e2 2 5 1
...

...
...

...
e12 9 12 8

Table 6.1: Example of an element table.

The table indexes the elements by their number n of element en in the left column, and local
node numbers 1, 2, and 3 in the top row. The table is then filled with the global node numbers
for each element. An example element (e2) is shown in figure 6.6, where local node number 2
corresponds to the global node number 5.

6.4 Selecting the Interpolation Functions

The next step is to choose the interpolation functions. The interpolation functions represent the
field variable and its variation over an element. Polynomials are often selected as interpolation
functions because they are easy to integrate and differentiate. The interpolation functions, make
it possible to describe the field variable continuously over the volume of the element. That is,
they describe the field variable at any given point within or at the boundary of the element.
The collection of interpolation functions for the entire solution domain provides a piecewise
approximation to the field variable.
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Example of a Piecewise Approximation
To illustrate this piecewise approximation we consider an example of a two-dimensional field
variable φ(x, y). We will illustrate how φ’s nodal values uniquely and continuously define φ(x, y)
for the entire solution domain in the x-y plane. At the same time, we will introduce the notation
used for the interpolation functions. Suppose that we have a problem with the solution domain
as shown in figure 6.1 on page 67. This domain has been sectioned into three-node triangular
elements with exterior nodes at the vertices of the triangles connecting the elements. This type
of domain discretization allow us to select φ to vary linearly over an element. Where the linear
variation can be illustrated as in figure 6.7.

Figure 6.7: Subdivided domain and piecewise linear solution surface.

The first step in finding the interpolation functions is to mathematically describe the plane passing
through the three nodal values of φ associated with element e. This is done in equation (6.1).

φ(e)(x, y) = β
(e)
1 + β

(e)
2 x+ β

(e)
3 y (6.1)

Equation (6.1) can then be rewritten to express the constants β(e)
1 , β(e)

2 , and β(e)
3 in terms of the

global Cartesian coordinates at the element nodes and the nodal values of φ. The rewriting is
done by evaluating equation (6.1) at each node, which results in equation (6.2).

φ
(e)
i = β

(e)
1 + β

(e)
2 xi + β

(e)
3 yi

φ
(e)
j = β

(e)
1 + β

(e)
2 xj + β

(e)
3 yj

φ
(e)
k = β

(e)
1 + β

(e)
2 xk + β

(e)
3 yk

(6.2)
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Separating the βi’s gives:

β
(e)
1 = φi(xjyk − xkyj) + φj(xkyi − xiyk) + φk(xiyj − xjyi)

2∆

β
(e)
2 = φi(yj − yk) + φj(yk − yi) + φk(yi − yj)

2∆

β
(e)
3 = φi(xk − xj) + φj(xi − xk) + φk(xj − xi)

2∆

(6.3)

where

2∆ =

∣∣∣∣∣∣
1 xi yi
1 xj yj
1 xk yk

∣∣∣∣∣∣ = 2
[
area of triangle with

vertices i, j, k

]
(6.4)

and by substituting equation (6.3) into equation (6.1) and rearranging its terms, we get

φ(e)(x, y) = ai + bix+ ciy

2∆
φi + aj + bjx+ cjy

2∆
φj + ak + bkx+ cky

2∆
φk (6.5)

where

ai = xjyk − xkyi bi = yj − yk ci = xk − xj (6.6)
the other coefficients are obtained through cyclic permutation of the subscripts i, j, and k. If
i=1, j=2, and k=3, the coefficients are given explicitly by equation (6.7)

a1 = x2y3 − x3y2 b1 = y2 − y3 c1 = x3 − x2

a2 = x3y1 − x1y3 b2 = y3 − y1 c2 = x1 − x3

a3 = x1y2 − x2y1 b3 = y1 − y2 c3 = x2 − x1

(6.7)

For each element e we now define

N (e)
n = an + bnx+ cny

2∆
n = i, j, k (6.8)

and let

φ(e) =

φiφj
φk

 N (e) =
[
N

(e)
i N

(e)
j N

(e)
k

]
(6.9)

where φ(e) is a column vector, N (e) is a row vector. The functions N (e) are exactly the functions
known as the interpolation functions. In matrix notation we write equation (6.5) as

φ(e)(x, y) = N (e)φ(e) = Niφi +Njφj +Nkφk (6.10)
If the domain has been discretized into M elements, the equations for the field variable over the
entire domain is given by

φ(x, y) =
M∑
e=1

φ(e)(x, y) =
M∑
e=1

N (e)φ(e) (6.11)

We see from equation (6.11) that if we know the nodal values of φ, then we can represent the
complete solution surface φ(x, y) as a series of interconnected triangles. The resulting many-
faced surface has no gaps between elements and no discontinuities because the values of φ at
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any boundary uniquely determines the linear variation of φ along the two nodes defining that
boundary. Although we used a particular interpolation function and a particular element type
to obtain equation (6.10) and (6.11), these equations are general. When using other element
types and more complex interpolation functions the form of the equations remains the same, it is
only the number of terms in the rows and columns of the matrices that differs. This means that
we can represent the unknown field variable in each element as in equation (6.12) if a solution
domain is subdivided into elements [HDSB01, page 87-90].

φ = N (e)φ(e) (6.12)

Global and Local Coordinates

Regardless of how we find the element properties, it is more convenient and easier to derive the
matrix equations for the element properties in a coordinate system associated with the element
(a local coordinate system). This is exactly the approach we followed for triangular elements
above. Because the local coordinate system, in this case, is a function of the geometry and
orientation of the element, the local coordinate system for each element may differ. When local
coordinate systems are used, it becomes necessary to transform the element matrices to the
common global coordinate system before the individual element matrices are assembled into
the system equations. This must be done to preserve all element characteristics in relation to
the other elements. Converting between two different coordinate systems is called coordinate
transformation and is required when the nodal unknowns are components of a vector [HDSB01,
page 37]. Note that displacements are typical field variables where the nodal unknowns are
vectors, so we must be careful to insure that coordinate transformation occur. When we assemble
the element properties, in section 6.5 on page 78, we will see that the coordinate transformations
are part of each element stiffness matrix. Because of this the transformations is done for each
element before the whole system is considered.

Natural Coordinates

The definition of a local coordinate system relies on the element geometry and all coordinates
(described in that local coordinate system) range between zero and unity, then the coordinate
system is known as a natural coordinate system. A natural coordinate system has the property
that when describing a point located precisely on one of the element’s nodes, then one of the local
coordinates of the point have unite value (the coordinate corresponding to this particular node),
and the value zero in all its other local coordinates. Between nodes the values of the coordinates
vary, but they always sum to unity. Natural coordinate systems can be constructed for a variety of
elements including: two-node line element, three-node triangular elements, four-node quadrilateral
elements, four-node tetrahedral elements and so on. Natural coordinates for a simplex (a triangle,
a tetrahedron, etc.) are also called barycentric coordinates. A particularly advantageous benefit of
natural coordinates is that: When we use these coordinates to derive the interpolation functions,
then integration can be done in a special closed form making it easier to evaluate the integrals in
element equations. Natural coordinates basically describes the location of any point inside an
element in terms of that element’s exterior nodes. The local natural coordinates within an element
are denoted by: Li where i ∈ {1, 2, ..., n} and n is the number of external nodes of the element.
There is always one coordinate associated with a node i that has unit value in this particular
node. By going through some examples it will become clear that local natural coordinates are
functions of the global Cartesian coordinate system [HDSB01, page 151-157].
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Natural Coordinates in One Dimension

To define a natural coordinate system for a two-node line element, we select L1 and L2 as the
natural coordinates. Then a point x can be expressed as a linear combination of the nodal
coordinates x1 and x2, as follows:

x = L1x1 + L2x2 (6.13)

We may interpret the coordinates L1 and L2 as weighting functions relating the coordinates at
the end nodes to the coordinate of any point inside the element. Furthermore these weighting
functions cannot be independent, since they must obey

L1 + L2 = 1 (6.14)

If we solve equation (6.13) and (6.14) simultaneously the result is the functions L1 and L2, as
follows:

L1(x) = x2 − x
x2 − x1

L2(x) = x− x1

x2 − x1
(6.15)

The functions L1 and L2 should be interpreted as simply being the ratio of lengths and are
therefore also called length coordinates. The variation of L1 and L2 within a single element is
illustrated in figure 6.8.

Figure 6.8: Variation of length coordinated within a line element.

Hence the linear combination of a field variable φ can be written as

φ(x) = φ1L1 + φ2L2 (6.16)

Natural Coordinates in Two Dimensions

Developing natural coordinates for the three-node triangular element uses the same approach
as in the one-dimensional case. Again, the goal of the procedure is to find the coordinates L1,
L2, and L3 that describe the location of any point x within the element or on its boundary. The
point (x, y) is illustrated inside a triangular element in figure 6.9 on the next page.
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Figure 6.9: Triangular element with point (x,y).

The relationship between the global Cartesian coordinates of the point (x, y) within the element,
and the new local natural coordinates, that we are constructing, should have a linear dependency.
The linear property holds for the following equations

x =L1x1 + L2x2 + L3x3

y =L1y1 + L2y2 + L3y3
(6.17)

In addition to the equation above, requiring linear dependency, we again require that the weighting
functions sum to unity:

L1 + L2 + L3 = 1 (6.18)

It is clear, from equation (6.18), that only two of the natural coordinates can be independent.
Intuitively this must be the case, because if we describe any point as a linear combination of two
points in the global coordinate system (two of an element’s nodal points in global space), then
there are only two independent coordinates if the described point lies inside the element. When
solving equations (6.17) and (6.18) simultaneously for L1, L2, and L3 as done in equation (6.19),
the result gives the natural coordinates in terms of the global coordinates.

L1(x, y) = 1
2∆

(a1 + b1x+ c1y)

L2(x, y) = 1
2∆

(a2 + b2x+ c2y)

L3(x, y) = 1
2∆

(a3 + b3x+ c3y)

(6.19)

Where 2∆ is given by equation (6.4) on page 72. Recalling the linear piecewise approximation
example from section 6.4 on page 71, we conclude that the natural coordinates L1, L2, and L3
are identical to the linear interpolation functions. This means that: Ni = Li for the three-node
triangular element when using a linear interpolation function. The natural coordinates for a
triangle have an analogous interpretation to length coordinates. For both the line element and
the triangular element Li is a ratio, in the case of the line it describes the ratios of lengths, but
for the triangle it is a ratio of areas. Figure 6.10 on the next page illustrates how the natural
coordinates for the triangular element, often called area coordinates, are related to areas. When a
point is located on the boundary of the element, then one of the area segments vanish and hence
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the appropriate area coordinate along the boundary is zero, hereby satisfying the compatibility
conditions.

Figure 6.10: Area coordinates for a triangular element.

As with the length coordinates, the variation of area coordinates inside an element can be
illustrated, this is shown in figure 6.11 for one element node.

Figure 6.11: Variation of area coordinates for one node over the entire domain.

Note that in figure 6.8 on page 74 the interpolation functions are viewed at a particular element
and that the graphs illustrates the interpolation functions for one element. In figure 6.11 however
the interpolation functions are viewed at one node, which means that all interpolation functions
for elements sharing this node are shown in the figure.

Natural Coordinates in Three Dimensions
We will now extend natural coordinates from two to three dimensions for the four-node tetrahedron
element. Natural coordinates for the four-node tetrahedron can be defined in a manner analogous
to the procedure used for the three-node triangle.
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Figure 6.12: Tetrahedron element with global coordinates (x,y,z).

A typical four-node tetrahedron element can be see in figure 6.12, the figure also defines how the
nodes are numbered. An element’s global Cartesian coordinates and local natural coordinates are
related by:

x = L1x1 + L2x2 + L3x3 + L4x4

y = L1y1 + L2y2 + L3y3 + L4y4

z = L1z1 + L2z2 + L3z3 + L4z4

1 = L1 + L2 + L3 + L4

(6.20)

Solving equation (6.20) gives:

Li = 1
6V

(ai + bix+ ciy + diz), i = 1, 2, 3, 4 (6.21)

and

6V =

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

= 6(volume of the tetrahedron) (6.22)

where examples of the constants are:

a1 =
x2 y2 z2
x3 y3 z3
x4 y4 z4

c1 = −
x2 1 z2
x3 1 z3
x4 1 z4

b1 = −
1 y2 z2
1 y3 z3
1 y4 z4

d1 = −
x2 y2 1
x3 y3 1
x4 y4 1

(6.23)

The other constants in equation (6.21) can be obtained by cyclic permutation of subscripts 1,
2, 3, and 4. The natural coordinates for the four-node tetrahedron are also called volumetric
coordinates and can be physically interpreted as the ratio of volumes in a tetrahedron element.
This physical interpretation is illustrated in figure 6.13 on the following page. Here the point P
inside the tetrahedron divides the tetrahedron volume V into four sub-volumes V1, V2, V3, and
V4. Each of these sub-volumes occupies a part of V which is equal to the coordinate ratio. Also
notice that together the sub-volumes completely covers V , which means that their ratios sum to
unity.
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Figure 6.13: Illustration of volume coordinates.

We can represent the field variable φ as a function of L1, L2, L3, and L4 (instead of x, y, and z)
as [HDSB01, page 158-159]:

φ(x, y, z) = φ1L1 + φ2L2 + φ3L3 + φ4L4 (6.24)

6.5 Finding the Element Properties

Once the elements and their interpolation functions have been selected we are ready to express
the properties of the individual elements and hereby determine their matrix equations. Finding
the element properties is tightly coupled with the kind of problem we are dealing with, but in
general terms the nodal values are represented on matrix form and related by some physical laws
as done in the example in chapter 5 on page 55 when explaining the equilibrium framework. The
goal is to find the element stiffness matrix, which is the stiffness matrix for a single element.

6.6 Assembling the System Equations

In order to find the overall system properties, modeled by the patchwork of elements, we must
combine all the element properties found in the previous step. In other words, the matrix
equations expressing the behavior of the elements must be combined to form the matrix equations
expressing the behavior of the entire system (the system equations). The assembly procedure
relies on the fact that the exterior nodes of the elements are interconnected, which means that
the value of the field variable in such a node is the same for all elements sharing the node. In
this respect the finite element method possesses the unique feature: The system equations are
constructed by assembling the individual element equations. Assuming that we by some means
have found the equations necessary to describe the characteristics of the elements, then the next
step is to combine these equations. Combining the element equations requires the same procedure
regardless of the type and complexity of problem being considered. Even if a mixture of several
different kinds of elements is used to model the system, the procedure remains the same. This
construction procedure is, as already noted, based on the assumption that the unknown field
variable values at shared nodes are the same for all elements connecting at that node. With this
in mind it is quite easy to combine the element equations [HDSB01, page 40].
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The Construction Procedure
First the dimensions of the resulting system stiffness matrix is found. The dimensions are the
same as the number of independent variables or degrees of freedom in the system. When the
dimensions are known, then all element stiffness matrices are expanded with zero, to have the
same dimensions. The last step is to add the expanded element stiffness matrices together. To
better understand how this is done, we show a small example.

Example on Two Four-node Tetrahedron Elements

Consider the following example with two elements as illustrated in figure 6.14.

Figure 6.14: Example of two connected four-node tetrahedra.

With the following element table:

n 1 2 3 4
ea 1 2 3 4
eb 2 3 4 5

Table 6.2: Element table for figure 6.14.

The element stiffness matrices are the:

Ka =


Ka

11 Ka
12 Ka

13 Ka
14

Ka
21 Ka

22 Ka
23 Ka

24
Ka

31 Ka
32 Ka

33 Ka
34

Ka
41 Ka

42 Ka
43 Ka

44

 Kb =


Kb

11 Kb
12 Kb

13 Kb
14

Kb
21 Kb

22 Kb
23 Kb

24
Kb

31 Kb
32 Kb

33 Kb
34

Kb
41 Kb

42 Kb
43 Kb

44

 (6.25)

Element ea relate forces to displacements as follows:

F a = KaUa ⇔


f1

f2

f3

f4

 =


Ka

11 Ka
12 Ka

13 Ka
14

Ka
21 Ka

22 Ka
23 Ka

24
Ka

31 Ka
32 Ka

33 Ka
34

Ka
41 Ka

42 Ka
43 Ka

44



u1

u2

u3

u4

 (6.26)

And element eb like this:

F b = KbU b ⇔


f2

f3

f4

f5

 =


Kb

11 Kb
12 Kb

13 Kb
14

Kb
21 Kb

22 Kb
23 Kb

24
Kb

31 Kb
32 Kb

33 Kb
34

Kb
41 Kb

42 Kb
43 Kb

44



u2

u3

u4

u5

 (6.27)
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The reason for combining the system stiffness matrix this way is directly apparent from the two
element equations above. In these equations some of the field variables are the same. The way
we combine them insures that these field variables will not be repeated in the final equations.

The expanded element stiffness matrices are then:

KA =


Ka

11 Ka
12 Ka

13 Ka
14 0

Ka
21 Ka

22 Ka
23 Ka

24 0
Ka

31 Ka
32 Ka

33 Ka
34 0

Ka
41 Ka

42 Ka
43 Ka

44 0
0 0 0 0 0

 KB =


0 0 0 0 0
0 Kb

11 Kb
12 Kb

13 Kb
14

0 Kb
21 Kb

22 Kb
23 Kb

24
0 Kb

31 Kb
32 Kb

33 Kb
34

0 Kb
41 Kb

42 Kb
43 Kb

44

 (6.28)

And the full system stiffness matrix:

K = KA +KB =


Ka

11 Ka
12 Ka

13 Ka
14 0

Ka
21 Ka

22 +Kb
11 Ka

23 +Kb
12 Ka

24 +Kb
13 Kb

14
Ka

31 Ka
32 +Kb

21 Ka
33 +Kb

22 Ka
34 +Kb

23 Kb
24

Ka
41 Ka

42 +Kb
31 Ka

43 +Kb
32 Ka

44 +Kb
33 Kb

34
0 Kb

41 Kb
42 Kb

43 Kb
44

 (6.29)

The final system equations now looks like this:

F = KU ⇔


f1

f2

f3

f4

f5

 = K


u1

u2

u3

u4

u5

 (6.30)

Note that the final system equations only include each force and displacement once.

6.7 Imposing the Boundary Conditions

Before we can solve the system equations they must be modified to include boundary conditions.
The boundary conditions are employed to make sure that the system in fact has a solution as
discussed in section 5.3 on page 61. If we have known nodal values, these are inserted, otherwise
we have to constrain parts of the system in some way.

6.8 Solving the System Equations

The result of the assembly procedure is a set of equations that has to be solved simultaneously to
obtain the unknown nodal values of the problem. In a static problem a set of linear or non-linear
algebraic equations must be solved. If instead it is a dynamic problem then the nodal unknowns
are functions of time, which generates a set of linear or non-linear ordinary differential equations
to be solved.

6.9 Making Additional Computations

The solution found when solving the system equations is sometimes used to calculate or find
other important parameters and values. For example this is where we detect if and when a crack
should be propagated in our model as elaborated in section 7.7 on page 95.
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Applying the Finite Element Method

In this section, we follow the seven step procedure of creating a discrete finite element model
introduced in section 6.2 on page 66. To summarize we have chosen the following which will be
further elaborated in upcoming sections. At step four, assembling the system equations, no choise
can be made so our choices are listed three steps at the time. We discretize the solution region
into four-node tetrahedral elements, select linear volumetric coordinates as our interpolation
function, and use elasticity theory and energy preservation to describe the element properties. At
this point we assemble the element properties to obtain the system equation precisely as described
in section 6.6 on page 78. Then we impose boundary conditions by fixing nodal positions, and
construct an equation solver using the Total Lagrangian Explicit Dynamics technique. Lastly we
add fracture mechanics as additional computations.

7.1 Discretize the Continuum

The continuum is a volumetric body. Therefore we need an element type which covers a volume.
We have chosen the four-node tetrahedron, as this is the simplest volumetric element and because
it is the most commonly used three-dimensional element type.

Figure 7.1: Four-node tetrahedron nodes with node names.

The four-node tetrahedron element has 4 nodes, 4 faces and 6 edges. For a tetrahedron with
vertices: a, b, c, d, as illustrated in figure 7.1, the nodes are named according to the following rule:
If a tetrahedron is defined in a right-hand Cartesian coordinate system, the nodes are named so
that nodes a, b, c are ordered counterclockwise when viewed from node d. By naming the nodes
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this way we ensure that the following equation for calculating the volume always gives a positive
value. [HDSB01, page 159]. The volume is then calculated as:

V = |(a− d) · ((b− d)× (c− d))|
6

. (7.1)

Tetrahedron structures gives good approximations to the continuum body. As it is hard to
imagine how tetrahedra fill a body figure 7.2 gives an example of how a box can be fully covered
by five tetrahedra, which is the minimum number nessecery to fill a box.

Figure 7.2: A general hexahedron decomposed into five tetrahedra.

As in the case of approximating a curve with triangular elements in section 6.3 on page 66, when
a larger amount of geometrically smaller elements are used, we get a higher accuracy on the curve
approximation.

7.2 Selecting the Interpolation Functions

As interpolation functions we use the volumetric coordinates as described in section 6.4 on page 76.
We have chosen natural coordinates as interpolation functions by setting the interpolation functions
equal to the natural coordinates.

Ni(x, y, z) = Li(x, y, z) (7.2)

The unknown field variable is in our case the displacements. We have a three component
displacement vector at each of the four nodes, as illustrated in figure 7.3 on the next page, giving
a total of 12 displacement variables.
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Figure 7.3: Displacement vectors in an four-node tetrahedron element.

The interpolation functions for our model define the element-wise displacement functions by
interpolating the four nodal displacement vectors, with their 12 variables over the element. The
12 values are represented by U , where the right superscript denoted the node number and the
right subscript the axial direction.

UT =
[
u1
x u1

y u1
z u2

x u2
y u2

z u3
x u3

y u3
z u4

x u4
y u4

z

]
(7.3)

and hence the continuous function U(x, y, y) = NU where N , called the interpolation matrix, is
defined by

N =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (7.4)

which gives the displacement functions [HDSB01, page 262]:

U(x, y, z) =


Ux(x, y, z)

Uy(x, y, z)

Uz(x, y, z)

 = NU =


L1(x, y, z)U1

x + L2(x, y, z)U2
x + L3(x, y, z)U3

x + L4(x, y, z)U4
x

L1(x, y, z)U1
y + L2(x, y, z)U2

y + L3(x, y, z)U3
y + L4(x, y, z)U4

y

L1(x, y, z)U1
z + L2(x, y, z)U2

z + L3(x, y, z)U3
z + L4(x, y, z)U4

z


(7.5)

where Li is given by equation (6.21).

7.3 Finding the Element Properties

To determine the element properties we are going to use the elasticity theory discussed in
section 3.4 on page 32. The element properties are related as follows: displacement to strain,
stress to strain via the theory of elasticity, and finally we convert stress and strain into potential
energy. The goal in this section, is to construct a function that describes the potential energy
of an element in terms of its nodal displacement vector U . The equation for potential energy is
defined to be the potential energy of the work done by the external forces (EV ) and the interal
strain energy (ES). ∏

(x, y, z) = ES + EV = ES −W (7.6)

Where ES is the strain energy and EV is the potential energy of the external forces. Where
EV = −W as defined in equation (3.7) on page 22. From equation (3.13) and (3.17) we have
that:
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ES =
∫
V

ε · σ dV +
∫
V

γ · τ dV EV = −W = −
∫
V

u · f dV

Instead of using the dot product notation we will use transposed matrices from here on. Further-
more, the four 3× 1 vectors, stress (σ and τ) and strain (ε and γ), have been combined into two
6× 1 vectors, and use the per element displacement and force vectors U and F , which look like
this:

∏
(x, y, z) =

∫
V

{
ε
γ

}T {
σ
τ

}
dV −

∫
V

UTF dV (7.7)

As EV is already a function of u, we concentrate on ES . The material matrix C from the elasticity
theory relates stress to strain. Appendix A defines this material matrix and the matrix relation
between stress and strain, repeated below for convenience:{

σ
τ

}
= C

{
ε
γ

}

ES(x, y, z) =
∫
V

{
ε
γ

}T {
σ
τ

}
dV =

∫
V

{
ε
γ

}T
C

{
ε
γ

}
dV (7.8)

The final step is a little more complicated, here we will relate strain to displacement. Recalling
from section 3.2 on page 25 that normal strain is defined by equation (3.9) as:

εx = ∂ux
∂x

εy = ∂uy
∂y

εz = ∂uz
∂z

and shearing strain by equation (3.11) as:

γxy = ∂ux
∂y

+ ∂uy
∂x

γxz = ∂ux
∂z

+ ∂uz
∂x

γyz = ∂uy
∂z

+ ∂uz
∂y

on matrix form this looks like the following:

{
ε
γ

}
=



εx
εy
εz
γxy
γxz
γyz


= LU(x, y, z) = LNU = BU (7.9)

where the differential operator L is defined as [HDSB01, page 233]:

L =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


(7.10)
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and the strain interpolation matrix B [HDSB01, page 235]:

B = LN =



∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0 0
0 ∂N1

∂y 0 0 ∂N2
∂y 0 0 ∂N3

∂y 0 0 ∂N4
∂y 0

0 0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z

∂N1
∂y

∂N1
∂x 0 ∂N2

∂y
∂N2
∂x 0 ∂N3

∂y
∂N3
∂x 0 ∂N4

∂y
∂N4
∂x 0

∂N1
∂z 0 ∂N1

∂x
∂N2
∂z 0 ∂N2

∂x
∂N3
∂z 0 ∂N3

∂x
∂N4
∂z 0 ∂N4

∂x

0 ∂N1
∂z

∂N1
∂y 0 ∂N2

∂z
∂N2
∂y 0 ∂N3

∂z
∂N3
∂y 0 ∂N4

∂z
∂N4
∂y



= 1
6V


b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4


(7.11)

Returning to the equation for strain energy we have:

ES(x, y, z) =
∫
V

{
ε
γ

}T
C

{
ε
γ

}
dV =

∫
V

UTNTLTCLNU dV =
∫
V

UTBTCBU dV (7.12)

and because the integral over the volume V only includes constant terms [HDSB01, page 263]:

ES(x, y, z) =
∫
V

UTBTCBU dV = UTBTCBU

∫
V

dV

= UTBTCBUV = UTV BTCBU

(7.13)

now defining the stiffness matrix to be:

K(e) = V BTCB (7.14)
the function becomes:

ES(x, y, z) = UTKU (7.15)
inserting this into the function for potential energy and solving the integration of external force
as above, gives: ∏

(x, y, z) = ES(x, y, z)− UTF
∫
V

dV = UTKU − UTFV (7.16)

To get an impression and overview of the equation sizes we list the matrix sizes: U : 12× 1, F :
12× 1, C: 6× 6, L: 6× 3, N : 3× 12, B: 6× 12, and finally K: 12× 12.

7.4 Assembling the System Equations

The system equations are assembled in a straightforward manner. We expand the element stiffness
matrices and add them to yield the system stiffness matrix as illustrated by the example in
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section 6.6 on page 79. To get an idea of the size of the complete system we consider a system
with 100 four-node tetrahedron elements, with 70 global nodes. The size of the complete system
will then have a force vector F : 70× 1 and U : 70× 1. The stiffness matrix for the system will
then be 70× 70 in size. The example above is relatively small compared with the models we are
using. The number of elements in our models range from 1000 to 10000 elements.

7.5 Imposing the Boundary Conditions

Because the number of unknowns in the system are larger that then number of equations, we
need to impose boundary conditions, so it is possible to solve the system. Recall that we aim
at modelling fragmentation of a tooth, as part of the surgical procedure of removing a wisdom
tooth. In this scenario a part of the tooth is located in the jaw, which effectively restrains the
position of its roots. By fixing the position of nodes located in the jaw, we impose a boundary
condition hereby restricting the solution domain.

7.6 Solving the System Equations

To solve the system equations we need to use the principle of minimum potential energy. To find
this minimum potential energy the system equations have to be differentiated [Bat07, page 85-87].

∂
∏
∂x

= 0 ∂
∏
∂y

= 0 ∂
∏
∂z

= 0 (7.17)

in our case, repeated from equation (7.16):∏
(x, y, z) = UTKU − UTFV

by applying equation (7.17) this becomes:

∂
∏

(x, y, z) = KU − F = 0 (7.18)

which in turn can be stated as:

KU = F (7.19)

This equation relates displacements to external forces via the stiffness matrix. The stiffness
matrix describes physical laws of the problem we are modelling. The stiffness matrix could model
any problem, making this equation general. Therefore equation (7.19) is called the standard finite
element equation.

Introducing Time Into the Equation
Equation (7.19) defines the standard finite element equation of equilibrium but only for static
problems. In dynamic problems we need to introduce time into the equation. The most important
equation in dynamic problems is based upon the static case as defined in equation (7.19) but
now there is motion. According to Newton’s second law motion is introduced as mass times
acceleration. By introducing this into the equation we obtain

MÜ +KU = F (7.20)

where M is the mass matrix, the dot notation is used for time derivatives so Ü is the acceleration
equal to the second derivative of the displacement, K is the stiffness matrix and U is the
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displacement vector. Equation (7.20) is equivalent to the equation for undamped harmonic
motion. By measuring the actual dynamic response of structures it can be observed that energy
vanishes during motion, preventing the structure from oscillating infinitely. Taking this into
account damping is introduced into the equation [Bat07, page 166]:

MÜ +DU̇ +KU = F (7.21)

where D the constant damping matrix. Equation (7.21) is still a linear expression. By allowing
the stiffness matrix K to change according to the displacement U we introduce non-linearity. The
stiffness matrix can be expressed as a function of the displacement:

MÜ +DU̇ +K(U)U = F (7.22)

Time Integration Schemes
In general implicit or explicit methods are used when obtaining numerical solutions to time-
dependent problems involving partial differential equations. Basically explicit methods calculate
the next system state based on the current, whereas implicit methods solve an equation from
the current system state. If B(t) is the current system state at time t and B(t+ ∆t) is the next
system state at time t plus a time step ∆t then an explicit method would obtain the next system
state by:

B(t+ ∆t) = F (B(t)) (7.23)

whereas an implicit method would obtain it by the equation:

G(B(t), B(t+ ∆t)) = 0 (7.24)

The implicit method requires extra computations when solving the equation but since G is a
function of both the current and the next system state, it is possible to find solutions using large
time steps. Implicit integration methods tends to be unconditionally numerically stable (with a
few exceptions) whereas the explicit method is not. The explicit methods are only conditionally
stable because the numerical error increases along with the size of the time step. The central
difference method is an explicit method that is very effective in the solution of certain problems.
Based on the previous system state at time t−∆t and the current at time t the central difference
method can be used to obtain an approximate solution for time t+ ∆t. The choice of integration
scheme depends on the problem domain. See [Bat07, page 768] for a more detailed explanation
of integration schemes.

Total versus Updated Lagrangian
Total Lagrangian refers to the formulation of the finite element method used. Stress, strain,
and deformation are all measured with respect to the initial (undeformed) configuration of the
system in contrast to the Updated Lagrangian formulation where measures are with respect to
the previous configuration [Bat07, page 522]

Total Lagrangian Explicit Dynamic Solver
The solver applied is known as the Total Lagrangian Explicit Dynamic Solver (TLED), the
following section will elaborate on the solving technique as presented in [TCO08]. Before getting
into the details of the solving technique, we will start by defining what exactly we are trying
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to solve. Given a volumetric body and using the finite element method we are interested in
computing the deformations and the internal stresses as a result of the externally applied forces.

The solver is based upon a total Lagrangian formulation, so the stress and strain measures must
comply with this. Here we use the Green-Lagrange strain tensor since it is a strain measure
formulated with respect to the initial (undeformed) configuration and therefore complies with
the total Lagrangian formulation. We also need to choose an appropriate stress measure to use
with the strain measure. According to [Bat07, page 515] the Second Piola-Kirchoff stress tensor
is work-conjugate with the Green-Lagrangian strain tensor. These two measures will be further
elaborate in this section.

The central difference method is used for the explicit time integration scheme which allows us
to perform calculations separately for each element. This makes the solving technique highly
suitable for parallel execution.

Solution Method

The solving technique used is developed for high-speed non-linear finite element analysis of
soft materials by [TCO08], their work is based on methods presented by [MJLW07]. The key
contribution made to the previous work done by [MJLW07] is mainly performance improvements,
e.g. a solution scheme for solving finite element equations in parallel. To gain an overview of
the solution method we will start by briefly introduce the equations used and how they are related.

The solver works in an iterative way and by the end of each iteration we obtain a solution to the
equilibrium of the body as defined in equation (7.22). The solution is the displacement of each
node in each element of the body.

Notation

Throughout this section the following notation is used.

t
0X_ (7.25)

A left superscript indicates the configuration (t = current) in which the quantity (X) is measured.
The left subscript (0) indicates the configuration the quantity is measured with respect to (0 =
initial configuration). If e is the right subscript it indicates the element the quantity is measured
in. If i or ij is the right subscript it refers to the ith row in a matrix or the matrix component on
the ith row in the jth column.

Displacement Derivatives

We will now use the shape functions to interpolate the current displacement matrix U at time
t. On matrix form the shape function for a tetrahedron is represented by a 4× 3 matrix, three
partial derivatives for each of the four nodes. We use the notation 0∂N for the initial partial
derivatives of the shape function. The current element displacement derivatives are obtained by:

t
0∂Ud = t

0U
T
e 0∂N (7.26)

where t0∂Ud is a 3× 3 matrix representing the updated displacement derivatives for an element.
The current nodal displacement for element e is represented in t

0Ud as a 4× 3 matrix and 0∂N is
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a 4× 3 matrix of element shape function derivatives. The shape function is obtained as explained
in 6.4 on page 76.

Deformation Gradient Tensor

The element displacement derivatives for each element have been obtained, so now we can
determine the deformation gradient tensor. This is the fundamental measure of deformation with
components:

t
0Xij = ∂ txi

∂ 0xj
i, j ε {1, 2, 3} (7.27)

The deformation gradient tensor is a second order tensor represented as a 3× 3 matrix [Bat07,
page 502]:

t
0X =


∂tx1
∂0x1

∂tx1
∂0x2

∂tx1
∂0x3

∂tx2
∂0x1

∂tx2
∂0x2

∂tx2
∂0x3

∂tx3
∂0x1

∂tx4
∂0x2

∂tx5
∂0x3

 (7.28)

The deformation gradient captures the stretches and rotations that the material fibres have
undergone from the initial undeformed configuration and to a deformed configuration. Since we
have already obtained the displacement derivatives equal to t

0∂Ud we simply add the identity
matrix I:

t
0X = t

0∂Ud + I (7.29)

If there is no displacement tUe is zero, therefore t0∂Ud is zero (7.26) and hence t0X will be equal
to the identity matrix. An important property of the deformation gradient is that it can always
be decomposed into a unique product of two matrices, a symmetric stretch matrix t

0Q and an
orthogonal matrix t

0R corresponding to a rotation such that[Bat07, page 508]:

t
0X = t

0R
t
0Q (7.30)

As explained in section 4.2 on page 47 shearing and normal strain can be represented as only normal
strain if the coordinate axis aligns with the principal directions of the strain. By decomposing
a tensor the principal directions are represented by the rotation matrix R and the principal
stretch in these directions is represented as an axial scaling matrix Q. It is important that the
deformation gradient tensor maintains the transformational properties of stretch and rotation.
This is the reason why the identity matrix is added in (7.29) or else the tensor would be all zeros as
a result of zero displacement (t∂Ud = 0). The zero-tensor would eliminating the transformational
properties and as we shall see later result in a density of zero.

Measure of Volume Change

The determinant of the deformation gradient is a measure of the volume change as a result of
deformation. The density of an element will change with the deformation because the mass is
constant but the volume can change, we refer to this as the density ratio given by:

0ρ
tρ

= tJ = det(t0X) (7.31)
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If the density ratio equals one it means the volume is unchanged, if above or below one it means
the volume increases or decreases, respectively. Note that the volume of any deformed element
must be positive due to the fact that no matter how much an element is compressed the material
can not disappear. This is the reason why the deformation gradient tensor equals the identity
matrix if there is no displacement as mentioned earlier. If the material is incompressible (e.g.
fluids) the volume remains unchanged.

Right Cauchy-Green Deformation Tensor

The measure of stress is evaluated from the measure of strain, so first we need a proper way of
measuring strain. We define strain measure as the change in material length from the initial
undeformed configuration to a deformed configuration. Although the deformation gradient defined
previously is a measure of deformation from the initial configuration to a deformed configuration,
it cannot be used directly for strain measures because it contains rigid body rotations. A
deformation gradient has the same properties as a rotation matrix. A rotation followed by its
inverse leads to no change, the inverse of an orthogonal rotation matrix equals its transpose, (RRT
= RTR = 1 see section 4.1 on page 41, so we can exclude the rotation in the deformation gradient
tensor by multiplying it with its transpose. This leads to the Right Cauchy-Green deformation
tensor, which represents a rotational-free strain measure, defined by:

t
0C = t

0X
T t

0X (7.32)

The tensor represents a measure of how much a material fiber has been stretched or compressed
from the undeformed initial configuration to a deformed configuration.

Green-Lagrange Strain Tensor

The Green-Lagrangian strain tensor is a non-linear strain measure based on the Cauchy-Green
deformation tensor. Multiplying the deformation gradient with its transpose (7.32) eliminates the
rotation, but at the same time the change in strain length is squared which makes it a non-linear
strain measure. Non-linear strain measures are suitable for both small and large deformations.
If the time step is small (much smaller than unity) the non-linear terms in the Cauchy-Green
deformation tensor becomes negligible and the strain measure reduces to a linear expression
[DD08, page 215]. The Cauchy-Green deformation tensor is defined with respect to the initial
configuration, hence the Green-Lagrangian strain tensor is on total Lagrangian formulation:

t
0EGL = 1

2
(t0C − I) (7.33)

Second Piola-Kirchoff Stress Tensor

With the Cauchy-Green deformation tensor and the Green-Lagrangian strain tensor in place we
can derive a measure of stress. As mentioned earlier the Second Piola-Kirchoff stress is work-
conjugate with the Green-Lagrangian strain tensor [Bat07, page 515], the second Piola-Kirchoff
stress tensor is obtained by:

t
0S = ∂t0Es

∂t0EGL
(7.34)

where Es is the strain energy function. A strain energy function is a function representing the
internal stored energy that will make a perfect elastic material return to its original shape when
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external forces are removed.

Using the neo-Hookean hyperelastic model, which is one of the simplest non-linear strain energy
functions, and through differentiation of equation (7.34) with respect to the Green-Lagrangian
strain, the stress components can be obtained by [TCO08, page 655]:

t
0Sij = G(δij −t0 C−1

ij ) + λ tJ (tJ − 1) t0C−1
ij (7.35)

where G is defined by equation (3.25) on page 34 and λ is defined by:

λ = Eν

(1 + ν)(1− 2ν)
(7.36)

In (7.35) δij is the Kronecker’s delta, define by:

δij =
{

1, if i = j
0, if i 6= j

(7.37)

The inverse of the Cauchy-Green deformation tensor is denoted t
0C
−1
ij , and tJ is the determinant

of the deformation gradient tensor at time t. The terms in equation (7.35) defining the second
Piola-Kirchoff stress do not seems to have a direct relation to the physical interpretation [Spe80,
page 134]. The intuition behind a strain measure can be related directly to the physical stretches
of the material fibers, the second Piola-Kirchoff stress on the other hand is much more complex in
its way of evaluating the stress. Once evaluated the stress itself is a standard quantity measured
in force per volume.

Recall that only six independent entries are necessary to define the entire state of stress as
explained in section 3.2 on page 27. Therefore the second Piola-Kirchoff stress (7.35) can be
written on vector form now denoted t

0Ŝ:

t
0Ŝ = [t0S11

t
0S22

t
0S33

t
0S12

t
0S23

t
0S13]T

where t0S11, t0S22, and t
0S33 are the normal stress and t

0S12, t0S23, and t
0S13 is the shearing stress.

Strain Displacement Matrix

The strain displacement matrix t
0B

e relates the strain in element e to the element’s nodal
displacements as defined by equation (7.11) on page 87. The strain displacement matrix is defined
for each element and represented as a 6× 12 matrix as defined in (7.11) on page 87. The strain
measure is defined for each element, while the strain displacement matrix is defined for each node
in each element. The strain displacement matrix applies a linear transformation, with translation
and rotation, to each node. The initial strain displacement matrix for the ath node in an element
is defined as:

0B
e
a =


0∂Na,1 0 0

0 0∂Na,2 0
0 0 0∂Na,3

0∂Na,2 0∂Na,1 0
0Na,3 0 0∂Na,1

0 0∂Na,3 0∂Na,2

 (a = 1, 2, ...., n) (7.38)
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where 0∂Na,i with subscript a and i denotes the partial derivative of the shape function for node
a with respect to the ith spatial dimension of the node position. Note that the constant strain
displacement matrix 0B

e
a is calculated for each node, therefore n equals four in the case of a

tetrahedron.

The strain displacement matrix is a function of the element’s geometry. In non-linear analysis
the geometrical function can change over time, hereby allowing the element’s nodes to move in
non-linear paths. Since the geometrical function can change over time we need to update the
strain displacement matrix. Using the constant strain displacement matrix 0B

e
a and the current

deformation gradient t0X we obtain the updated strain displacement matrix 0B
e
a by:

t
0B

e
a = 0B

e
a
t
0X

T (a = 1, 2, ...., n) (7.39)

Nodal Force Contributions

The internal stresses and the strain displacements have been obtained so now we can derive the
nodal force contributions P̃ . The nodal force is calculated for each node in each element. The
four nodal forces are obtained by:

tP̃ e = 0V e t0B
e T
L

t
0Ŝ

e (7.40)

where tP̃ e is a 12×1 column matrix, 0V is the initial volume, t0Be is the 6×12 strain displacement
matrix and t

0Ŝ is a 6×1 row matrix defining the stress. All quantities are defined for each element
e.

Nodal Displacement

The final step is to calculate the displacement matrix U for each element. When elements share a
node, each element will have force contributions to that particular node (each obtained by equa-
tion 7.40) and the result is the sum of all contributions denoted Pi where i is the global node index.

Using the central difference method and equation (7.22) on page 89 the component-wise displace-
ment for the configuration at time t+ ∆t can be obtained by:

t+∆tUi =
tFi − tPi + 2Mii

∆t2
tUi + (Dii2∆t −

Mii
∆t2 )t−∆tUi

Dii
2∆t + Mii

∆t2
(7.41)

where M is the constant mass matrix, D is the constant damping matrix, and F is the externally
applied load. It is assumed that tU and t−∆tU are known, tU and t−∆tU being the current and
previous displacement matrix, respectively. Since the mass and damping matrices are constant
the following vectors on page 95 can be pre-calculated hereby simplifying equation (7.41):

t+∆tUi = Ai(tRi − tFi) +Bi
tUi + Ci

t−∆tUi (7.42)
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Mii = 1
4
ρV

Dii = αMii

Ai = 1
Dii
2∆t + Mii

∆t2

Bi =
2Mii
∆t2

Dii
2∆t + Mii

∆t2
= 2Mii

∆t2
Ai

Ci =
Dii
2∆t −

Mii
∆t2

Dii
2∆t + Mii

∆t2
= Dii

2∆t
Ai −

Bi
2

(7.43)

7.7 Discrete Fracture Mechanics

In addition to solving the system of equations we are also interested in determining if the level of
stress causes any fractures. We can assume certain properties when working with brittle materials.
When a crack emerges we can assume it will propagate all the way through the material due to
the huge energy release. Furthermore we can assume that the crack propagation will happen
in the blink of an eye due to the fact that cracks propagate approximately with the speed of
sound in brittle materials [Gdo05, page 242]. A variety of different crack tracking schemes
exists and basically they can all be categorised into four types of tracking; fixed tracking, local
tracking, non-local tracking and global tracking. Determination of the continuous crack plane in
three-dimensions is the key challenge and handled in a distinct way for each crack tracking category.

Crack Tracking Strategies

Fixed tracking is based upon the assumption that the failure surface is a priori known. A
typical example of predefined failure surfaces could be in structures with obvious weak interfaces
between substructures like in weldings. Knowing the possible failure surface beforehand makes
the algorithm very fast and stable but not very flexible.

Local tracking is based upon loading history of the material. Here the failure surface is not a
priori known. As the load on the material increases so do the internal stress eventually exceeding
the fracturing limit σF . When the limit has been exceeded there are many different strategies for
determining the orientation of the crack plane. One such strategy is based upon the maximum
principal stress direction where the direction of the stress is normal to the crack plane. The plane
orientation is modified according to any cracked neighbouring elements to ensure a continuous
crack surface. The drawback of the local tracking scheme is the fact that any new crack plane is
severely restricted by the local neighbouring elements already cracked. If two edges are already
determined by neighbours then the crack plane is fully determined no matter the direction of the
maximum stress.
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Non-local tracking is an extension to the local tracking. To circumvent the obvious drawback of
the local tracking, this algorithm considers more than just local neighbours when determining
the crack plane. All neighbours within a certain radius are taken into account often interpolating
the different maximum stress directions. This method requires extra computational costs and it
strongly relies on the number of existing cracked neighbours. If the number of cracked neighbours
is low this type of algorithm doesn’t do very well [JSK08, page 1341].

Global tracking is based upon finding a global solution. A global system of equations must be found
and solved to determine the continuous failure surface. Finding and solving the system of equa-
tions requires a lot of efforts compared to the other methods. The computational cost of this type
of algorithm is the highest of all four methods, but the algorithm is also the most general and stable.

The Crack Tracking Algorithm

The following crack tracking algorithm is based upon [AB05] and uses a local crack tracking
scheme. The local tracking scheme is computationally fast and it produces great results with
brittle materials since it tends to produce relatively flat failure surfaces. Since the orientation of
new crack planes are severely restricted by any cracked neighbour elements, the failure surface
tends to be neither concave nor convex shaped. This conforms with the fact that cracks in brittle
materials tends to travel the shortest path to the surface. An element e has between one and four
neighbouring elements, here defined as those nearby elements that shares a triangular face with e.

It is assumed that the crack initiation only occurs within a single element. If more than one
element exceeds the fracturing limit only the element with the highest principal stress is fractured
hereby initiating the crack. Finding the maximum principal stress means solving the eigenproblem
as explained in section 4.2 on page 47. The maximum principal stress direction defines the normal
vector to the initial crack plane. This means the orientation of the initial crack plane is only
determined by the maximum principal stress direction.

(a) (b) (c)

(d) (e) (f)

Figure 7.4: Crack configurations.
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As depicted in figure 7.4 on the facing page case (a) the crack plane has no predefined neighbouring
edges and is therefore determined by the maximum principal stress direction alone. When the
crack has been initiated the following crack planes depend on the element’s neighbourhood. Case
(b) illustrates an element about to be cracked. In this case the cracked neighbour defines two
crack points that must be located on the crack plane we are about to determine. The new crack
plane is only free to rotate around the edge defined by the two neighbouring crack points. The
new normal vector n′ to the plane is determined by the principal stress direction n and the shared
edge defined between crack point A and B, is obtained by:

n′ = n−
[
n · (A−B)
|A−B|2

]
(A−B) (7.44)

In case (c-f) the crack plane normal is determined by the pre-existing neighbouring crack planes.
With two or more neighbouring edges the plane normal is completely determined and the element’s
maximum principal stress direction is not considered. Case (a) initiates the crack which only
happens once. From here the crack propagates by cracking all neighbours in the next iteration,
and their neighbours in the next etc. This way the failure surface will propagate like rings in the
water, from the initial cracked element and out.
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Chapter 8

The Simulation Model

The simulation model is here defined to be the fundamental components driving the simulation.
The fundamental components are responsible for the user interaction, solving the system of
equations and visualizing the results in a three-dimensional scene. The following section will
introduce the fundamental components of the simulation model. We will elaborate on the
responsibility of each component and the technologies used. An overview of the simulation model
is illustrated in figure 8.1.

Figure 8.1: Overview of the simulation model.
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Framework Setup
The simulator model is implemented using the OpenEngine framework1 which is a lightweight
visualization framework with a small kernel and an extension system easy to use. The framework
is written in C++2 and the build system cmake3 makes is easy to build on Windows, Linux and
Mac OS X. The authors of this thesis are also the co-authors of the OpenEngine framework so
the choice was obvious.

The first step is to set up the OpenEngine framework. The framework handles the main loop
of the application. All components that need process time must be inserted into the framework
as modules. The modules will be processed in a sequential manner in each main loop iteration.
Setting up the framework includes adding nodes to the scene graph, setting the position and
orientation of the camera, adding input handlers, and setting the path to disk resources like
models and textures.

Data Loading
Some resources have to be loaded from disk. The primary resource loaded is the solid model
we are interested in simulating. The solid model is loaded into memory using a TetGen loader.
TetGen4 is an open source project capable of generating a quality tetrahedral mesh from a surface
representation of a solid model. The data model representing the model consists of a vertex-pool,
a surface mesh, and a body mesh. The vertex-pool is an one-dimensional array containing vertices
represented in global space as vectors. Each component of a vertex vector is represteted as a
floating point number. The surface and body meshes are one-dimensional arrays containing
integer indices, pointing into the vertex-pool. The surface mesh bundles three indices pointing to
the three vertices from the vertex-pool defining a surface triangular face. The body mesh bundles
four indices pointing to the four vertices defining a tetrahedron. The surface mesh is used when
the body surface is visualised and the body mesh identifies the nodes used when simulating the
physics.

Pre-computations
The pre-computations are an important part of the Total Lagrangian Explicit solver as explained
in section 7.6 on page 94. The equation for displacement as defined by (7.41) on page 94 has
been simplified through pre-computation of the mass, the damping, and the three matrices A,
B, and C as defined in equation (7.43) on page 95. The pre-computations are essential to the
performance of the solver. By pre-computing as much as possible more resources are made
available at run-time. The shape function derivatives are an important part of the finite element
method and can also be pre-computed. The shape function derivatives are obtained as explained
in section 6.4 on page 70.

Explicit time integration operators such as the central difference method used is only conditionally
stable. The main concern on the approximating method is the fact that the error increases with
the time step size. It is essential to keep the time step size small or else the approximation error
will grow out of proportion causing numerical instability. There is a complicated relation between
the maximum allowed time step, the geometry of the elements and the material properties. To

1 http://www.openengine.dk
2 http://en.wikipedia.org/wiki/C++
3 http://www.cmake.org/
4 http://tetgen.berlios.de/index.html
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prevent the explicit integration from becoming numerically unstable we must determine the size
of the critical time step [TCO08, page 654]:

∆tcr = Le
c

(8.1)

where Le is the smallest edge length from the set of elements and c is the dilatational wave speed
which defines how fast sound travels through the material defined by:

c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)

where E is Young’s modulus, ν is Poisson’s ratio and ρ is the density. These values are all material
dependent and usually determined by table look up.

In order to improve the performance of the crack tracking algorithm, a neighbouring list is
pre-computed. Since it is a precondition that all elements are interconnected, each element must
have at least one neighbour and maximum four. By pre-computing the neighbouring list the
problem of finding neighbouring elements reduces at run-time from an O(n2) to an O(1) problem
by table look up.

Finally the initial volume of each element is pre-computed. The initial volume is used when
calculating the nodal force contributions as explained in section 7.6 on page 94.

User Interactions
The user interaction is handled by the OpenEngine framework. The module handling the user
interaction is attached as a listener to the device registering the input. The device could be a
keyboard, mouse, joystick, or haptic device. When input is registered all attached listeners are
notified and proper action is taken by the receivers. Since the OpenEngine framework is single
threaded, the event queues are only flushed once during each main loop iteration. The simulation
must produce a minimum of 25 frames per second in order to accommodate the demand for
real-time execution. Since each main loop iteration produces one frame the user interaction will
be handled with the frame rate.

Driving Forces
The initial state of the body is equilibrium. When there are no external forces acting on the body
there are no internal forces. As explained in section 3.2 on page 28 the body is in equilibrium
when the external forces equals the internal forces (equation 3.18). So in order for the system to
react we have to apply external driving forces. The driving force can be applied to the entire
domain, like the gravitational force would be, or it can be applied to only parts of the domain.
To affect the system we have implemented different types of modifiers. The concept of modifiers
and the different types are explained in section 10.1 on page 115. Modifiers like the force modifier
and the displacement modifier change the equilibrium of the system by adding external forces or
by changing the displacements, respectively.

Solving the System of Equations
The system of equations must be solved in each iteration to constantly converge towards equilib-
rium. The solving technique is explained in detail in section 7.6 on page 89. The explicit solver is
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a straightforward algorithm that in a fixed number of steps calculates displacements as a result
of the externally applied forces.

As mentioned in the acknowledgement PhD student Karsten Noe kindly shared his knowledge
and prototype solver. The solver is implemented in a straightforward manner according to the
TLED article [TCO08]. Instead of reimplementing his work we incorporated and re-factored
parts of the solver. We have reused the pre-computation of the shape function but improved the
calculation of the nodal masses from an equally to a weighted distribution. Furthermore we have
improved the precision of the shape function simply by increasing the floating point precision
in the intermediate calculations from single to double. We have reused parts of the core matrix
calculations, primarily the part where quantities like the deformation gradient and the strain
and stress tensors are updated through matrix multiplications. We added all the modifiers used
for controlling the driving forces as elaborated in section 10.1 on page 115. The eigenproblem
solver and all components related to the crack tracking algorithm have been added. All debug
and visualization tools were implemented from scratch (elaborated in chapter 10 on page 115).

Crack Tracking Strategy

The crack tracking strategy is responsible for determining when the material will crack and how
the crack will propagate. The crack tracking strategy used here is based on a local tracking
scheme and the principle of maximum stress direction as explained in section 3.5 on page 35.
Finding the maximum principal stress means solving the eigenproblem as explained in section
4.2, therefore we need to solve the eigenproblem for each tetrahedral element and compare the
maximum eigenvalue with the fracturing limit defined for the material. The eigenproblem is
solved for each stress tensor in each iteration, using a library, but the problem can be solved by
hand as explained in section 4.3 on page 48.

Algorithm 8.0.1: Crack Tracking Algorithm()

MaxStress← 0
for each e ∈ E

do

solve eigenproblem for e
if eigenvalue > MaxStress
then MaxStress← eigenvalue

if MaxStress > limit

then
{
determine crack plane orientation from eigenvector
add element to crack front set C

while |C| > 0

do


lookup neighbouring elements
determine crack plane from principal stress direction and cracked neighbours
add uncracked neighbours intersecting crack plane to C
remove cracked element from C
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If the fracturing limit has been exceeded in one or more elements the simulation is stopped
and we switch from parallel to sequential execution. The crack tracking algorithm is performed
sequentially since it would not benefit from a parallel approach because the crack is propagating
in a sequential manner. The element with the maximum eigenvalue will be the first one to
crack. Since the first element has no cracked neighbours the orientation of the first crack plane is
determined only by the maximum principle stress direction as explained in section 7.7 on page 96
on page 96.

In the algorithm E is the set of tetrahedral elements and C is the crack front set. When the
crack has been initiated the crack tracking strategy will proceed by cracking neighbour elements
until the failure surface has propagated all the way through the solid object. The crack tracking
operates in a iterative way. When an element has been cracked, all its neighbouring elements,
intersecting with the crack plane, are added to the crack front set. The crack front set is the set of
elements that will be cracked in the next iteration. As the crack propagates the size of the crack
front set usually increases rapidly since most elements has more than one uncracked neighbour.
But when the failure surface reaches the surface of the solid object the crack front set decreases.

(a) Initial crack plane (b) First Neighbour element cracked

(c) After the first iteration (d) Crack tracking done

Figure 8.2: Crack propagation.

To illustrate the crack tracking algorithm consider figure 8.2. A concrete beam is dropped on a
solid box, gravity is the only external force acting on the beam. Figure 8.2a illustrates the initial
crack plane, where the orientation of the plane is determined by the maximum principal stress
direction. Figure 8.2b and 8.2c illustrate the propagation of the crack. Finally the failure surface
has reached the surface of the object and the crack tracking has been completed as illustrated in
figure 8.2d.
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Visualization
The visualization is based upon a scene graph and a renderer. The scene graph is a tree structure
of entities that can be visited breadth-first or depth-first by the renderer as defined by the visitor
pattern [GHJV95, page 331]. The renderer is responsible for rendering the geometry on the
screen, decoupling the rendering technology from the representation of the geometry. The default
renderer is implemented using OpenGL5 due to its cross platform libraries.

Cleanup
When the simulation is terminated the memory allocated must explicitly be freed. This goes for
the main memory as usual but also for the memory allocated on the graphics card.

5 http://www.opengl.org/
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Chapter 9

Parallel Execution

The Total Lagrangian Explicit Dynamics solving technique (described in section 7.6), used to solve
the finite element equations is highly suited for parallel execution. So to get optimal performance
when implementing this technique, we need to implement it for a parallel architecture. The range
of parallel technologies and platforms to choose from is large, ranging from cluster farms, grid
computers, graphics cards to multi-cored central processing units (CPUs). Motivated by the
surgical scenario, and the request from densists to use the simulator in educational training, we
have chosen a hardware platform, which is commonly available, inexpensive, and does not require
a large storage facility. Two different platforms and accompanying APIs have been discussed,
both available as consumer products and affordable. The first candidate was the Cell architecture,
which is commonly available in Sony’s PlayStation 3. The PlayStation 3 is suited for this kind of
development because it allows custom installation of an alternative operating system like Linux,
and because both an API and programming tools are freely available for Linux. The second
platform is an ordinary PC with a high performance graphics card. Graphics cards nowadays are
relatively powerful when considering the computational power contra price. We have chosen to
base our implementation on multi-cored graphics cards as this is a widely spread technology, and
because we find the provided programming abstractions and tools well suited for rapid prototype
development.

9.1 Programming a Graphics Card

The processing unit on a graphics card is called the graphics processing unit (GPU), and general
purpose programming of the GPU is called GPGPU programming. GPGPU programming has
been done for quite a while now. The beginning was a sort of misuse of the original APIs for the
GPU. Programmers wrote their applications in shader languages, which originally were intended
for producing graphical effects as part of the visualization. As GPGPU programming has spread,
new initiatives towards making a general GPGPU API, like for example CUDA, has started
to surface. We have chosen the CUDA programming language developed by NVIDIA. This
programming API has a higher level of abstraction, it comes with useful libraries and is easy
to use. The drawback is that it is hardware dependent, and can therefore only be used with
NVIDIA graphics cards.
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9.2 Basic Description of CUDA

The Compute Unified Device Architecture (CUDA) is an extension to the C programming
language, which enables the programmer to use the NVIDIA GPUs for GPGPU programming
(this only apply for NVIDIA 8000 or newer GPUs). The extension includes special syntax, allowing
programmers to explicitly determine which parts of the program that is going to be executed on
the device. In CUDA terminology a host refers to the CPU with access to the main memory, and
the device refers to a specific graphic card with access to the available memory, known as global
memory, on the graphics card. In CUDA the kernels are launched with parameters defining the
block and grid size. Threads are executed in blocks which are wrapped in a grid, as illustrated in
figure 9.1.

Figure 9.1: Illustration of the CUDA grid, block, and thread abstractions. ‡

When a kernel is launched the grid is set for execution. When executing the grid each block is
scheduled one by one and 16 threads from the block are executed simultaneously by the hardware
in what is known as a half warp. The execution order of the blocks and warps is non-deterministic
and can be different every time the program is executed. The execution and scheduling of threads
is performed by the device. The extension also includes special keywords which can be used inside
kernels to access the dimensions and identifiers of the thread, block and grid.

9.3 Our Implementation

The CUDA technology allows code to be executed in parallel. The parallel execution used here is
based on the Single Instruction, Multiple Thread (SIMT) technique used to achieve data level
parallelism. This technique is closely related to the wide known Single Instruction, Multiple Data
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(SIMD). It basically means that multiple threads are executing the same program (same set of
instructions) in parallel but with different data. When executing parts of the program in parallel
we use blocking calls to start kernels on the GPU, this means that either the host or device is
active. Switching from the host to the device, must be done explicitly in the code by executing a
kernel. The host and the device have separate memory spaces. If data needs processing on both
the host and the device it needs to be copied from one memory space to the other.

We will now elaborate on how the finite element system equations are solved by element-wise
computations and how the individual solutions are assembled by the end of each iteration.
Consider the element equation (6.26) for one tetrahedron, as explained in section 6.6 on page 79.
The equation is repeated below:

F a = KaUa ⇔


f1

f2

f3

f4

 =


Ka

11 Ka
12 Ka

13 Ka
14

Ka
21 Ka

22 Ka
23 Ka

24
Ka

31 Ka
32 Ka

33 Ka
34

Ka
41 Ka

42 Ka
43 Ka

44



u1

u2

u3

u4


These equations can be easily computed in parallel for each element. It is when elements are
connected and hereby interacting it gets more complex. When elements are connected they share
nodal points. The shared nodal points can be seen explicit by looking at the final system equation.
Consider the example from section 6.6 on page 79 again, here we directly see each element’s
contribution to the shared nodal variables. They are seen as weights (Ke

ij) added together in the
matrix. The system matrix from equation (6.29) in the example is repeated below for convenience:

K = KA +KB =


Ka

11 Ka
12 Ka

13 Ka
14 0

Ka
21 Ka

22 +Kb
11 Ka

23 +Kb
12 Ka

24 +Kb
13 Kb

14
Ka

31 Ka
32 +Kb

21 Ka
33 +Kb

22 Ka
34 +Kb

23 Kb
24

Ka
41 Ka

42 +Kb
31 Ka

43 +Kb
32 Ka

44 +Kb
33 Kb

34
0 Kb

41 Kb
42 Kb

43 Kb
44


Since the element equations are added together we can skip the construction of the system
stiffness matrix, and instead add the individual nodal contributions from each element. This is
the approach used by the TLED solver which can be summarized as:

• The external nodal forces are applied by the user interaction module and processed by the
finite element solver. This data is located in the main memory and copied to global device
memory as the first step.

• We then start the main solver kernel (TLED solver) called calculateForces_k. This
kernel is executed for each element, and performs all calculations as explained in section 7.6
on page 89. The resulting list of nodal force contributions are saved in global memory.
Furthermore this kernel solves the eigenproblem for each element, and detects if the material
dependent fracturing limit has been exceeded. If so it raises a flag.

• The nodal force contributions are now being added together for each node to determine
the resulting force and displacement. This kernel is named updateDisplacements_k. The
resulting displacements are stored in global memory, one displacement vector for each node.

• The final kernel is named (updateBodyMesh_k) and it updates the surface and body mesh
by adding the displacement vector to the initial position for each node. Updating the global
nodal positions is only done for visualization purposes. Due to the small simulation time
step performed in each iteration we solve the system equations multiple times in between
the visualizations.
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The finite element solver is executed every iteration of the main-loop, but the visualization of
the surface, does not need to be updated this often. The visualization is set at approximately 30
frames per second (FPS), guaranteeing fluent motion of the visual animations. The visualization
of the surface is done via the CUDA OpenGL interoperability API. This API allows OpenGL to
access the memory used by the CUDA programs and directly visualizes it without the need of
copying the data back and forth between main and global memory.

Execution Time

To get an overview of how time consuming the different kernels are, we have made time measure-
ments of each kernel executed. The test was performed on the laptop described in appendix D.2
on page 159 with version 1.2 of the CUDA Visual Profiler, using the tooth mesh described in
appendix B.2. Table 9.1 shows the result from the profiler.

kernel name # calls GPU microseconds % GPU time
calculateForces_k 52325 10968700 65.45
updateDisplacements_k 52325 2893260 17.26
testCollision_k 54417 1605060 9.57
memcopy 25115 966304 5.76
applyForceToIntersectingNodes_k 54417 131965 0.78
constrainIntersectingPoints_k 54417 125802 0.75
updateBodyMesh_k 2093 67304 0.40
precalculateShapeFunctionDerivatives_kernel 1 22 0.00
loadArrayIntoVBO_k 8 18 0.00
applyTransformation_k 2 9 0.00
precalculateABC_kernel 1 6 0.00

Table 9.1: Profiling results.

To get an visual overview of the percentages, the following diagram illustrated kernels that is
part of one iteration, and not pre-computational kernels.

(a) Diagram. (b) Information.

Figure 9.2: GPU time spent on the individual kernels.
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About 2/3 of the computational resources on the device is spent on processing the finite element
solver which is not surprising considering the complexity compared to the other tasks.

9.4 Optimizing Performance

To get optimal performance from the device through CUDA we need to overcome the memory
latency limitation imposed. The memory bus on the graphics cards has a high bandwidth but also
a large latency when fetching from the global memory. When programming in CUDA one needs
to be aware of the fact that memory fetching must be done in correspondence to the alignment
and coalescing rules as described in [NVI09]. The alignment and coalescing constraints allow
the GPU to effectively hide the memory latency. We want the simulation to run in real-time,
therefore all code inside the main-loop has been optimized for performance in relation to these
guidelines As most of this code is executed on the device, the main concerns are the memory
latency as described.

Using float4 Instead of float3
CUDA devices are capable of reading 4-byte, 8-byte or 16-byte words, corresponding to 32-bit,
64-bit, and 128-bit operations, from global memory into thread registers when executing threads
[NVI09, page 81]. In our simulation we often use three consecutive floats. For example when
representing vectors in space, like global coordinates, displacements, etc. If we represented this by
three float variables, CUDA would generate two memory operations to fetch the memory, one
32-bit and one 64-bit. Instead we use one float4, which corresponds to a single 128-bit memory
operation, resulting in faster memory fetching. The increased performance is at the expense of
increased memory consumption.

Coalesced Memory Access
Global memory bandwidth is used most efficiently when the simultaneous memory accesses by
threads in a half-warp, can be coalesced into a single memory transaction of 32, 64 or 128 bytes
[NVI09, page 82]. This means that if the threads are using memory cells located next to each
other in an array the memory for all the threads can be fetched in one transaction or block
copied of the memory. To facilitate this we use the same memory allocation scheme as [RMS08,
page 55-56]. Instead of allocating tetrahedral elements side by side, we use arrays of individual
variables related to all tetrahedra. This means that arrays are allocated for storing all densities,
all masses, all nodal indices etc.
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Helper Tools

In this chapter we will introduce the helper tools implemented. The different kind of modifiers
will be introduced followed by the tensor visualization tool.

10.1 Modifiers

The initial state of the physics system is equilibrium. In order to simulate a reaction something
has to act on the system forcing it out of equilibrium. All interaction with the system is done
through modifiers of different types. Each modifier consists of a nodal selection tool and an action
that will be applied to the selected nodes. Any volumetric shape can be used as a selection tool.
By default box selection is used. Nodes inside the volumetric shape are in the set of selected
nodes. During simulation a specified action is applied to the set of selected nodes. The modifiers
vary in the way they interact with the physics system. The following modifiers types will be
introduced:

• Fixed Displacement Modifier

• Force Modifier

• Displacement Modifier

• Restrictive Displacement Modifier

• Projective Displacement Modifier

Fixed Displacement Modifier
The fixed displacement modifier restrains the displacement of all selected nodes by fixing their
position in space. The positional restriction is applied to all selected nodes. Usually it is necessary
to restrict part of the object when external forces are applied. Otherwise the object would just
move instead of causing deformation, but of course this depends on the scenario. The fixed
displacement modifier is like a clamp holding the object in place while working on it.

Figure 10.1 on the next page illustrates a beam fixed in one end. The fixed displacement modifier
is always visualized with a green color to indicate that the selected nodes are neutral to any stress
and strain. The restriction is applied simply by overwriting the new displacement by the current
hereby resetting any nodal movement.

115



Chapter 10. Helper Tools

Figure 10.1: Beam fixed at one end.

Force Modifier

The force modifier applies a force with any specified direction and magnitude to all selected nodes.
This is very useful for applying loads to selected parts of the object being simulated. During
simulation new nodal selection can be made hereby gradually increasing or decreasing the load.

Figure 10.2: Supported beam with load applied to its end point.

Figure 10.2 illustrates a beam supported at the left end and applied with external forces at its
right end. The selection tool for the force modifier is always visualized by a brown color with the
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selected nodes grayed out. As illustrated in figure 10.2 on the preceding page only the end of the
beam is selected and the force modifier applies a force acting downwards which causes tension on
top of the beam and compression at the bottom.

Displacement Modifier
The displacement modifier adds a specified displacement vector to all nodes selected. Furthermore
it restricts the selected part of the object from any deformation hereby preventing it from
absorbing any stress or strain.

Figure 10.3: The beam is fixed at the left end while stretched by the modifier at the other end.

Figure 10.1 illustrates a beam with its left end fixed while a displacement modifier is applied at
the right end. The displacement modifier stretches the beam horizontally causing tension in the
beam. The stresses and strains occurring as a result to this, can only occur in the mid subsection
of the beam where none of the two modifiers are applied. The selection tool for the displacement
modifier is always visualized by a blue color with the selected nodes grayed out.

Restrictive Displacement Modifier
The restrictive displacement modifier simply restricts any nodes from entering the space occupied
by the selection tool. This modifier can be use for simple collision detection between an object
and the modifier. The restrictive displacement modifier can be used as a ground restriction in
the scene or simply as a colliding object as illustrated in figure 10.4 on the next page. If a node
is about to enter the space occupied by the selection tool it will be moved back to its previous
location. The drawback of this very simple restriction is that the method only applies under the
assumption that a previous nodal position exist. If an object does not move, all nodal positions
in the current configuration at time t equals the nodal positions in the previous configuration at
time t−∆t. In other words the object has to intersect with the modifier and not the other way
around. Due to the simplicity this type of modifier is computationally fast in contrast to the
projection displacement modifier as explained next.
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Figure 10.4: Gravitational force acts on the beam supported in both ends.

Figure 10.4 illustrates the gravitational force acting on the beam supported by two restrictive
displacement modifiers. The selection tool occupying the restrictive space is always visualized by
a yellow color.

Projection Displacement Modifier

The projection displacement modifier is an extension to the restrictive displacement modifier, the
only difference being the algorithm used when correcting the nodal displacements.

Figure 10.5: Center nodes at the top of the beam are forced down causing the beam to bend.

118



Section 10.2. Tensor Field Visualization

As already mentioned the restrictive displacement modifier only works when the object intersects
with the modifier. We need the ability to interact with the object in the way a craftsman uses
his tools on a material. When the modifier intersects with an object we need to calculate a
new displacement for the intersecting nodes. The default strategy implemented relies on vector
projection. Any node intersecting the space occupied by the selection tool is projected onto
the closest plane from the geometry defining the selection tool. By default a box is imple-
mented as the selection tool. If a node is located inside the box, the distance to each of the six
planes defining the box is calculated. The node is then projected onto the plane closest to the node.

Figure 10.5 on the preceding page illustrates a supported beam being subjected to a projection
displacement modifier forcing the midpoint nodes down causing the beam to bend. The selection
tool for the restrictive displacement modifier is visualized by a dark blue-gray color.

10.2 Tensor Field Visualization

Visualizing the stresses and strains would reveal very interesting information e.g. how stress and
strain propagates through the simulated object and where potential strengths and weaknesses
would be located within the material. Stress and strain tensors are defined for each element. The
number of elements depends on the size of the problem domain but it is not unusual to have
hundreds or thousands of elements. The data set, containing a tensor for each element forming
a tensor field, can easily become relatively large. The challenge of tensor field visualization is
to transform this large data set into a single image, easy to interpreted. A method for this has
been presented by [Wün08]. The method presented is based upon data transformation and data
reduction.

Data transformation is necessary since the data set consists of tensors on matrix form which cannot
be visualized directly. We are interested in retrieving the relevant information from the data set
and represent it differently. As already explained in section 4.2 on page 47 the eigenproblem of a
second order symmetric tensor defines the principal eigenvalues and corresponding eigenvectors.
Retrieving the principal values and directions from a second order tensor is an example of data
transformation.

Data reduction is necessary since the data set can become relatively large dependent on the size
of the problem domain. A way of reducing the data set could be to only extract the largest
eigenvalue and the corresponding eigenvector since these define the maximum principal value and
direction, respectively. Experiments with stress visualization indicate that when external forces
are applied to an object the amount of stress heading in the maximum principal stress direction
is by far the most dominant in comparison to the other two stress directions. Recall that the
tensor quantity (here being stress or strain) can be resolved into three mutually perpendicular
vectors known as the maximum, medium and minimum principal directions.

The following tensor field visualization is based upon solving the eigenproblem for each stress
tensor and reduce this by only considering the largest eigenvalue (maximum principal stress)
and the direction of the corresponding eigenvector (maximum principal stress direction). The
eigenvalue is visualized by mapping it to a color scheme and the eigenvector is visualized by a
small visual entity pointing in the same direction as the eigenvector.
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Vizualizing the Eigenvalues

To visualize the maximum principal stress, we use a color scheme. Since the eigenvalue is mapped
to a color scheme which has three components the conversion is not straightforward. We need to
use a color ramp to do the mapping. A color ramp is a function which maps a range of scalar
values to colors. We use a linear scaled color ramp known as the hot-to-cold color ramp, ranging
from blue over green to red as illustrated in figure 10.6. This color ramp is ideal when visualising
values above and below zero.

Figure 10.6: The hot-to-cold color ramp.

To define such a function we first have to specify how to represent colors in the simulation. We
used the three component color scheme, with red, green, and blue (RGB) represented as floating
point values ranging from 0 to 1. Any color representable is a mixture of these three components.
The three components are bundled in a 3× 1 vector. So red for example is represented as (1,0,0),
green (0,1,0), and blue (0,0,1). A color ramp can be illustrated as in figure 10.7. The edge length
of the box is one hereby limiting each RGB component range to be between 0 and 1. The black
emphasized line in the figure illustrates the hot-to-cold color ramp. All values are mapped to this
line hereby being mapped a scalar value to three vector components.

Figure 10.7: Illustration of how to interpolate color values for the hot-to-cold color ramp.
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The principal stress is mapped to at color within the range of the material dependent tensile
strength (σ+

F ) and compressive strength (σ−F ). Zero stress is green, stress above σ+
F is clamped

to blue and stress below σ−F to red. Two linear interpolation functions are used in between, one
for stretch and one for compression. Each interpolation function is determined by the material
properties entered.

Visualizing the Eigenvectors

The shape of the visual entity is important, it has to clearly illustrate the direction and location of
the stresses without requiring too many resources. A relatively simple visual entity must be used
since the size of the tensor field grows linearly with the number of visual elements. Figure 10.8
illustrates the shape of the visual entity we constructed. It is suitable for visualizing the directions
of the stress tensors due to its simple representation and the obvious orientation.

Figure 10.8: A visual entity shaped like an airplane.

The nose of the airplane is pointing in the maximum principal direction and the wings are
aligned the medium principal direction. Any polygon model can be used for visualizing the
stress tensors, but since the absolute coordinates of the visual entity for every tensor is being
represented the memory usage quickly becomes an issue. The visual entity for each stress tensor
is represented separately to facilitate parallel execution of the matrix calculations necessary for
orienting and locating the geometry in space. By doing so the calculations and the performance
of the visualization is improved at the expense of an increased memory consumption.

The first step is to load the preferred geometry that is going to be used as the visual entity. The
visual entity is represented by triangular faces, each with three points. Each point is inserted into
the model vertex buffer V as a column vector:

V =


v0
x v1

x vnx

v0
y v1

y · · · vny

v0
z v1

z vnz

0 0 0 0

 (10.1)

where n is the number of vertices in the model. The airplane as illustrated in figure 10.8 is
constructed from seven triangles each represented by three distinct vertices, which gives a total
of 21 vertices. Each vertex is of type float4 which occupy 16 bytes each (therefore a zero row in
V ). By default the airplane model representation takes up 336 bytes of memory. To improve
the visualization we take the lighting conditions into account by calculating the correct normal
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vectors for each polygon. The normal vectors are represented by matrix N in the same way as
the vertices in matrix V :

N =


n0
x n1

x nnx

n0
y n1

y · · · nny

n0
z n1

z nnz

0 0 0 0

 (10.2)

No matter how many stress tensors we are about to visualize matrices V and N are only
represented once in the memory. But since each tensor has its own orientation and position
in space we need to construct a transformation matrix for each tensor. Each stress tensor is
represented as a 3× 3 symmetric matrix from which we construct a 4× 4 transformation matrix.
The transformation matrix is an affine matrix representing both rotation and translation as
defined in section 4.1 on page 39. The rotation matrix must align its x- and y-axis with the
maximum and medium principal direction of the stress tensor, respectively. As explained in
section 4.2 on page 47 finding the principal values and directions means solving the eigenproblem
for the stress tensor. The solution to the eigenproblem for an n × n symmetric matrix is n
eigenvalues and n mutually perpendicular eigenvectors. By normalising each eigenvector we obtain
an orthogonal set of unit vectors also known as an orthonormal basis. The three vectors in the
orthonormal set represent the base vectors that span the vector space oriented according to the
principal directions. From the orthonormal basis we can construct an affine linear rotation matrix
simply by inserting the eigenvectors into a transformation matrix T e. Assuming that the nose of
the airplane points in the positive x-axis the vector representing the maximum principal direction
is used as the base vector defining the x-axis. The maximum principal direction is inserted as
row vector [e11, e12, e13] in matrix T e, [e21, e22, e23] and [e31, e32, e33] become the medium and
minimum principal direction, respectively. The center of mass for each tetrahedral element is
used as the position of the geometry and inserted as the fourth column vector [tex, tey, tez]T hereby
adding translation to matrix T e which becomes:

T e =


e11 e12 e13 tex

e21 e22 e23 tey

e31 e32 e33 tez

0 0 0 1

 (10.3)

T e is constructed for each stress tensor. All together this forms the matrix array T , which
contains a 4× 4 transformation matrix T e for each element e:

T =
[[
T 0] [T 1] [T 2] · · · [T e]] (10.4)

By applying the individual transformation matrices to the vertex buffer V the geometry of the
model is rotated and translated into the absolute positions. The transformation matrix T e is
applied to each vertex in buffer V :

V ei = T e Vi (10.5)

where Vi is the ith column vector in V in equation (10.1). On matrix form equation (10.5)
becomes:
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
V ei,x′

V ei,y′

V ei,z′

0

 =


e11 e12 e13 tex

e21 e22 e23 tey

e31 e32 e33 tez

0 0 0 1




Vi,x

Vi,y

Vi,z

0

 (10.6)

Each vertex in the model, is transformed for each element and stored in buffer V ′ representing
the absolute coordinates ready for visualization:

V ′ =
[[
V 0] [V 1] [V 2] · · · [V e]] (10.7)

The normal vectors are transformed the exactly same way and stored in the N ′ array:

N ′ =
[[
N0] [N1] [N2] · · · [Ne

]]
(10.8)

The matrix operation of applying the transformation matrix T e to each vertex point V ei = [x, y, z]
for each element e can be carried out separately which makes it suitable for parallel execution.
The following example illustrates the 10× 10× 10 test beam with 964 tetrahedra as described in
appendix B. If the airplane, with its 21 vertices, is used as the visual entity for each of the 964
tensors about to be visualized, the location and orientation of the entity is determined by a total
of 964× 21 = 20244 threads. If normal vectors are included we have twice as many threads.

Figure 10.9: Beam with tensor visualization.

It can be difficult to interpret the tensor visualization especially from a distance as illustrated in
figure 10.9 where the scenario is a beam fixed in one end with external forces pulling it down
at the other end. But a closer look often reveals a pattern as illustrated on figure 10.10 on
the following page. Notice that we cannot determine the sign of the maximum principal stress
direction, this explains the opposite directions of the visual entities. The principal directions
of the stress tend to point in a horizontal direction in the top and bottom of the beam which
corresponds to the tension and compression in these directions. In the middle of the beam the
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stress directions seem undetermined which in fact is the case when we consider the magnitude of
the stress alternating around zero in this area.

Figure 10.10: A closer look of the tensor visualization reveals a pattern.
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Results

In this section we will present and discuss the results obtained from conducting a series of different
test scenarios. The test scenarios can be subdivided into two groups. Test scenarios in the first
group are aimed towards testing general capabilities of the simulation model, such as performance
and scalability. In the second group of test scenarios focus is only on evaluating the crack tracking
strategy. The evaluation of the crack tracking strategy is primarily done through visual inspection.
Since it is very difficult, if not impossible, to predict exactly how an object would break in the
real world, we have to rely on our intuition of how objects should behave. As mentioned in the
introduction to this thesis, one of the critera of success is to produce plausible results. If the
outcome of a simulation scenario is consistent with the intuition we consider the result plausible.
We have tried to construct the test scenarios in a way that should induce an obvious intuition for
the expected outcome. In order to reproduce the following results obtained see appendix E.2 for
instructions.

11.1 Scalability

The first test is conducted to see how the simulation time scales with the size of the problem
domain. The execution time for a single iteration of the physics module is highly dependent on
the geometry, but independent of the material parameters being used. To illustrate the relation
between the execution time of the physics module and the size of the problem domain we have
measured the time it take to perform 106 iterations with different models varying in number
of body elements. The average execution time for a single iteration recorded and plotted as a
function of the number of elements. The results obtained are listed in table 11.1 on the next page.
The test was conducted on the performance desktop setup described in appendix D using the
models described in appendix B. The execution time was measured using the high precision timer
(Utils::Timer) from the OpenEngine framework.
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quantity # nodes # tetrahedra ∆tsim
tetrahedron 4 1 28.97
bar 20× 20× 20 113 263 36.85
box 14 17 36.91
bar 10× 10× 10 373 964 39.34
tooth (simple) 371 1168 42.60
tooth with 33% slice (simple) 483 1652 52.78
test tooth 646 1902 56.26
tooth 2264 667 61.09
tooth with 33% slice 3796 1049 96.24
bar 5× 5× 5 1619 4658 137.57
sphere 119 2393 256.11
test tooth high resolution 2763 8819 262.38
bar 2.5× 2.5× 2.5 6297 21809 726.29

Table 11.1: Simulation time in microseconds per iteration for different models.

Figure 11.1 shows the time measurements from table 11.1, plotted as a function of the number of
elements.
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Figure 11.1: Graph of the mesh size contra simulation time.

Using the best-fit tool from GNU Plot1 the relation between simulation time and number of
elements can be approximated with a straight line (y = α x), where α ≈ 0.032 with a standard
asymptotic error of 2.619%. The graph clearly shows that we have a linear dependence between

1http://www.gnuplot.info/
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the geometry size and the time it takes to execute an iteration of the physics module. We expect
this linear dependence to hold until the mesh data exceeds the memory limit of the graphics card.

11.2 Real-time Analysis

As stated in section 8 on page 102, we have a stability requirement on the governing equation.
The requirement imposes a critical time step limit, denoted ∆tcr, which must be met for the
system to be stable. This means that the times step we use to extrapolate the physics module
must be smaller than ∆tcr, for the physics module to be stable. If we also want the physics
module to run in real-time, we must compute one iteration of the physics faster than ∆tcr. The
conclusions is: If we want the physics module to be stable and run in real-time, then we must
have: ∆tsim ≤ ∆tcr. From the critical time step ∆tcr calculated by equation (8.1) on page 103
we obtain:

∆tcr =
√

1
c2
Le = αLe

1
c2

= ρ

M
M = E(1− ν)

(1 + ν)(1− 2ν)

As seen in the equations ∆tcr is a function of the three material parameters: E, ν, and ρ.
∆tcr = αLE describes ∆tcr as a function of the minimum edge length Le in the model. In the
following example we use the material parameters for dentin. Teeth are primarily made of dentin
which basically consists of calcium, phosphorus and mineral salts. Dentin is considered a brittle
material since it has very little tendency to deform before fracturing. By calculating the P-Wave
modulus M , and α for dentin, where E = 12 GPa, ν = 0.32, and ρ = 2580 kg/m3 as listed in
section B.1 on page 153 in appendix B, we obtain:

M = 12 · (1− 0.32)
(1 + 0.32)(1− 2 · 0.32)

≈ 17.17 GPa (11.1)

1
c2

= ρ

M
=

2580 kgm3

1700
99 G N

m2

≈ 150 · 10−9( s
m

)2 (11.2)

α =
√

1
c2
≈ 387 · 10−6 s

m
(11.3)

Where the units are converted by the following definitions:

N = kg ·m
s2

Pa = N

m2 (11.4)

To confirm the dimensions of the tooth, we borrowed an actual wisdom tooth from the School
of Dentistry, Aarhus University, and modeled this as a mesh in millimeters. An axis aligned
bounding box around the tooth has the dimensions: width × height × depth, 10.7 × 20.1× 10.1.
Calculating ∆tcr for the tooth model, which has a Le = 0.14 mm = 0.14 · 10−3 m:

∆tcr = α · Le = 387 · 10−6 · 0.14 · 10−3 ≈ 55.6 · 10−9s (11.5)

which means time progresses with the size of 55.6 nanoseconds in each iteration. The constant
execution time ∆tsim for this model, was measured in section 11.1 on page 127 to be ∆tsim = 42.6
microseconds. This means it takes much more computational time to predict the next configuration
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at time t+ ∆t that the actual time step ∆t represents. In other words if it takes 20 seconds to
foresee 10 seconds into the future you will always be behind. This illustrates that with the given
object and material properties we cannon achieve real-time performance which strictly complies
with the theoretical laws of physics.

11.3 The Elasticity Theory

In this test scenario we are interested in comparing the simulated deformation with the theoretical
deformation calculated by hand. The scenario is a beam fixed in one end and stretched by a
displacement modifier in the other end. The direction of the stretch is parallel to the x-axis.

As explained in section 3.3 on page 30 elastic deformation is the physical property of a material
when it deforms due to external forces applied, but returns to its original shape when the forces
are removed. The modulus of elasticity E is used for defining the elastic property of a given
material. The modulus of elasticity is defined by (equation 3.20 on page 33), repeated below:

E = normal stress
normal strain

= σx
εx

⇔ εx = σx
E

As mentioned in section 7.6 on page 89 we use the Green-Lagrange strain measure t0E with the
second Piola-Kirchoff stress measure t

0S instead of normal stress and strain. In section 3.4 on
page 32 we assumed that the relation between stress and strain is linear since brittle materials
are of our main concern. Let us start by measuring the actual relation between stress and strain
to see if the linear assumption is correct. The following experiments are all conducted with a
20× 40× 150 millimeter beam and E = 12 GPa corresponding to dentin. The internal stresses
and strains are caused by the stretching alone, no other external forces are applied. The setup is
illustrated in figure 11.2. Notice how the beam becomes thinner according to Poisson’s ratio as
explained in section 3.4 on page 33.

(a) (b)

Figure 11.2: Beam is being stretched to conduct stress-strain measures.

While the beam is being slowly stretched we measure the Green-Lagrange strain tensor as defined
in equation (7.33) on page 92:

t
0E = 1

2
(t0C − I)

By using the technique described in section 4.2 on page 47 we determine the maximum principal
strain value by solving the eigenproblem for the symmetric tensor t0E. By applying axial stretch
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along the positive x-direction in the global coordinate frame, the maximum principal strain
direction will also be oriented this way.

We will now construct a stress-strain curve as the ones introduced in 3.3 on page 29. It is the
maximum principal strain value we are interested in relating to the maximum principal stress
value. The second Piola-Kirchoff stress measure is used as defined in equation (7.35) on page 93,
repeated below:

t
0Sij = µ(δij −t0 C−1

ij ) + λ tJ (tJ − 1) t0C−1
ij

Using a similar approach as with the strain value, we solve the eigenproblem for the symmetric
stress tensor t0S hereby determining the maximum principal stress value. The stress and strain
tensors are defined for each tetrahedral element in the body. A random element located somewhere
near the center of the body has been pre-selected. Once the simulation starts the stress and
strain measurements are conducted every 50th iteration. The result is illustrated in figure 11.3.

Figure 11.3: Relation between Green-Lagrange strain and second Piola-Kirchoff stress.

The relation is obviously non-linear, but as seen on the x-axis the Green-Lagrange strain measure
reaches 1.5. The Green-Lagrange strain measure is non-linear so physically a measure of 1.5
means the beam has been stretched twice its original length. A brittle material like dentin cannot
be stretched this far since its tensile strength is approximately 100 MPa (σ+

F = 100× 106 Pa)
as described in appendix B. The fracturing limit is illustrated by the horizontal blue line in
figure 11.3. The maximal strain at the point of fracture is obtained by equation (3.20):
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ε =
σ+
F

E
= 100× 106

12× 109 ≈ 0.008333

Considering the 150 millimeter beam this corresponds to a maximal stretch of 1.25 millimeters
before the point of fracture is reached. The theoretical elastic modulus E is expressed as a linear
relation between stress and strain. It is reasonable to use the non-linear relation between the
Green-Lagrange strain and the second Piola-Kirchoff stress in correlation with the linear elastic
modulus, because the non-linear relation is approximately linear below the point of fracture.
Figure 11.4 illustrates how close to linear the simulated relation between stress and strain is.

Figure 11.4: Below fracture point the simulated stress-strain relation is approximately linear.

Using the best-fit tool in GNU Plot the measured relation between stress and strain, below
the point of fracture, can be approximated with a straight (green) line (y = α x), where
α = 1.4730× 1010 with a standard asymptotic error of 0.2%. Brittle materials are defined to be
materials that can be model by a linear stress-strain relation (described in section 3.3 on page 32).
As illustrated although we are using the non-linear neo-Hookean elasticity theory, we have an
approximate linear dependence between stress and strain for brittle materials (dentin) below the
fracture point.

11.4 Fragmentation of Supported Beam

This is the first scenario with the purpose of testing the crack tracking algorithm. The main
purpose is to see if the crack tracking algorithm determines a failure surface according to our

132



Section 11.5. Mesh Independent

intuition of how the concrete beam would break. The scenario is simple; a beam is located the
top of two boxes supporting each end of the beam as illustrated in figure 11.5a. A third box is
slowly being moved downwards hereby forcing on top of the beam down until the beam fractures.
Concrete is considered a brittle material so the beam is expected to fracture vertically somewhere
around its center where the internal forces will peak.

(a) (b)

Figure 11.5: Fragmentation of supported beam.

The beam bends as the force increases gradually causing the internal stress to peak around the
center of the beam. As seen on 11.5a the beam is compressed on the top and stretched at the
bottom peaking around the center. When the material dependent point of fracture (σ−F or σ+

F ) is
exceeded the crack is initialized and starts to propagate through the solid object. As illustrated in
figure 11.5b the crack tracking algorithm determines a failure surface located around the center of
the beam propagating vertically as expected. At the top of the beam the failure surface is located
slightly to the right of where the external forces are applied. As expected the crack propagates
towards the center of the beam here creating a slightly curved failure surface. The point of origin
and the curvature depends on the amount of force being applied and especially the rate at which
they are applied.

11.5 Mesh Independent

When it comes to approximating the shape of an object the number of elements determines
the quality of the approximation. As explained in section 6.3 on page 66 any solution domain
with curved boundaries can be approximated by a series of straight lines or flat planes. When
discretizing a complex shaped object we must choose an appropriate element size in order to
make a reasonable approximation. This is not the case with simple shaped objects like a beam.
It is a rectangular box which can be discretized by a minimum of five tetrahedra as illustrated in
figure 7.2 on page 84. Discretizing a beam into five elements would probably not be advisable due
to the quality of the failure surface. A minimum of five elements are enough for approximating the
shape but not for a reasonable approximation of the failure surface. In general we are interested
in how the number of elements, hence the quality of the mesh, affects the outcome of the crack
tracking algorithm. For benchmark purposes we have constructed four beams with the exact
same dimensions but with gradually increasing number of elements as described in section B.2
on page 154 in appendix B. The beam is fixed in one end while external forces are applied at
the other end. The external forces pulling down are uniformly distributed on the selected nodes
(elements colored gray). Each beam setup is exactly the same, illustrated in figure 11.6 on the
following page.
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Figure 11.6: Benchmark setup for testing mesh dependency.

Each beam was tested one at the time and as seen on figure 11.7 the resulting failure surfaces
determined by the crack tracking algorithm are fairly similar. In all four cases the point of origin
of the crack was located slightly to the right of the supported area and the orientation of the
initial crack plane was vertical. Although the four failure surfaces are slightly different they are
all equally located and oriented. By increasing the mesh quality we also increase the number of
crack planes and hereby the details in the continuous failure surface. As seen on figure 11.7d the
failure surface is more curved than on figure 11.7a but the overall location and vertical curvature
remains the same. In this scenario the crack tracking algorithm and the failure surface determined
seems unaffected by the increasing quality of the mesh.

(a) Beam with 263 elements. (b) Beam with 964 elements.

(c) Beam with 4658 elements. (d) Beam with 21809 elements.

Figure 11.7: Crack tracking with beam in different mesh qualities.
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11.6 Fragmentation of Tooth Mock-up

The purpose of this scenario is once again to see if the crack tracking algorithm determines a
failure surface according to our intuition. The solid object being used in this scenario is a mock-up
of a tooth with a groove drilled halfway through. Due to the groove the object must be weakened
in this area and is therefore expected to fracture somewhere close to this. The bottom of the
tooth mock-up is fixed while forces are being applied gradually at the top pushing the object to
the right. Again we use dentin as the material (E = 12 · 109):

(a) (b)

Figure 11.8: Fragmentation of tooth mock-up.

As seen on figure 11.8a the modifier pushes the top of the tooth mock-up to the right, which
causes compression near the groove. The pressure is gradually increased until the point of fracture
(σ−F or σ+

F ) is exceeded. The failure surface as seen on figure 11.8b started at the bottom of the
groove and propagated to the left slightly curving downwards. The beam is fragmented around
its weak midpoint near the groove as expected.
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11.7 Fragmentation of Tooth

In this scenario a tooth model is fragmented using a simulated dental tool known as an elevator,
as depicted in figure 2.5 on page 8. When the groove has been drilled in the tooth, the elevator is
inserted into the groove and twisted in order to deform the brittle dentin material just enough to
cause fracture. The tip of the elevator tool is actually slightly curved which makes it suitable for
elevating both the crown and the roots once they are separated. In this scenario attention is only
focused on fracturing the tooth and not on how to elevate the separated parts from the jawbone.
The representation of the elevator tool is therefore simplified to a non-curved plane as illustrated
in figure 11.9. The tooth model is fixed by its roots similar to the actual scenario. Performing
the drilling of the groove is beyond the scope of this simulator, therefore the tooth model has a
predefined groove with a depth that corresponds to 1/3 of the tooth’s width.

Figure 11.9: The tooth model with a predefined groove.

The elevator tool in inserted into the groove and slowly twisted until the dentin material has
been deformed beyond its fracture point. External forces are applied in a somewhat different way
in comparison with the other scenarios. Since the elevator tool is twisted all forces are applied to
a relatively small area. When the tool is twisted the crown is being forced upwards, while the
roots are being forced downwards. The twisting motion of the elevator tool causes maximum
tension at the bottom of the groove as expected. As seen on figure 11.10a on the facing page
the crack has its origin at the bottom of the groove. As the crack propagates in all directions
from its origin, the orientation of the failure surface becomes clear. Due to the restriction on the
roots the only part free to move is the crown, therefore it slightly tilts backwards as the groove is
gradually being widened. The stress starts to point downwards on the opposite side of where
the groove is located. This reaction explains why the failure surface tends to curve downwards
eventually reaching the surface of the material slightly lower compared to the horizontal location
of the groove. The curvature of the failure surface starts to emerge early in the propagation as
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seen in figure 11.10c.

(a) (b)

(c) (d)

(e) (f)

Figure 11.10: Crack propagation through tooth model.

11.8 Fragmentation with Varying Density

As illustrated in section 11.2 on page 129 we do not have the computational resources required to
perform real-time simulation of the given model if we strictly comply with the theoretical laws of
physics. Assuming the simulated model and the hardware used is unchanged, the computational
time required for performing a single iteration (∆tsim) is constant. The question is how can we
increase the size of the simulated time step without violating the boundary condition that refrains
the explicit time integration from numerical instability. We need to increase performance at the
expense of accuracy.

137



Chapter 11. Results

∆tcr =
√

1
c2
Le = αLe

1
c2

= ρ

M
M = E(1− ν)

(1 + ν)(1− 2ν)

Consider the equation for determining the critical simulated time step ∆tcr. We do not wish
to change the geometrical representation of the model assuming it is reasonable, so Le is left
unchanged. The other option is to change α which depends on E, ν, and ρ. If possible we do not
want to change the elastic modulus E because this would affect the relation between stress and
strain. As seen from the equations we would need to decrease the elastic modulus to obtain a
larger critical time step hereby softening the material. Changing Poisson’s ratio ν is not an option
since this only effects the contraction ratio during deformation. With very small deformations
the effect will be minimal. Changing the density ρ is an option. By increasing the density by a
factor of 106 we obtain a critical time step size ∆tcr of:

1
c2

= ρ

M
=

2580 · 106 kg
m3

1700
99 G N

m2

≈ 150 · 10−3( s
m

)2 ∧ α =
√

1
c2
≈ 387 · 10−3 s

m
(11.6)

∆tcr = α · Le = 387 · 10−3 · 0.14 · 10−3 ≈ 55.6 · 10−6s (11.7)

With a constant computational time of ∆tsim = 42.6·10−6 and a critical time step ∆tcr = 55.6·10−6

the real-time condition if fulfilled ( ∆tsim ≤ ∆tcr), but how will this effect the stress and strain
behaviour and hereby the prediction of the failure surface.

The effect of increasing the density, besides obtaining a larger ∆tcr time step, is increased mass
and damping matrices in the system due to equation (7.43) on page 95 where the damping factor
is determined from a constant factor α and the mass M as Dii = αMii. The high-density object
will have increased damping but the stress and strain behaviour seems unaffected. Recall that
the rate of deformation before reaching the point of fracture is very low in brittle materials like
dentin (below 1% as calculated in section 11.3 on page 130). Damping the very limited motion
has almost no effect neither on the stress and strain nor visually. The failure surface determined
in the high-density material corresponds to the failure surface determined in the material with
the correct density. Although the simulated response of the material is not theoretically correct
the failure surface in the high-density material is considered plausible and still in correspondence
with the intuition. In the sense of physical interpretation the change in density is drastic and out
of proportions. But in the sense of simulated response the prediction of the crack surface seems
realistic. With the constant computational time of 42.6 · 10−6 the stress and strain analysis is
conducted about 20.000 times pr second facilitating real-time interaction and visualization.

The following test scenario illustrates how changing the density affect the outcome of the crack
tracking algorithm. The illustrations to the left in figure 11.11 on the next page show the
crack propagation in a tooth with the correct density simulated in somewhat slow-motion. The
illustrations to the right are conducted with a density increase of 106:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.11: Crack propagation through normal contra high density material.
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Future Work

During the development of the simulation prototype lots of improvements came to mind. When
considering the endless interdependent components of the final prototype, ideas, questions or
improvements arise to each of the individual components. It seems like whenever we look into how
things are connected and how changes would propagate though the system new challenges arise.
In this section we have limited the discussion of any future work by only considering improvements
of the prototype that will lead towards a simulator that can be evaluated by dentists. To form a
decent evaluation basis for a dentist, improvements must be made. It would be very helpful to
get evaluation feedback from a dentist especially on the sense of touch when the fragmentation is
performed. Analysing the fragments of the tooth by comparing the simulated fragmentation to
actual tooth fragments could be very interesting.

Improving the precision on the pre-calculations

The pre-calculation of the shape function derivatives is based on the geometry of the elements.
Currently the global position of the elements can cause significant floating point inaccuracy
leading to inaccurate shape function derivatives. To minimize the error the shape function
derivatives could be pre-calculated in local space coordinates instead of global. The geometry
of the elements are represented by floating point numbers which have a relative representation
error[Øst02, page 9]. So the error increases with the distance from origo of the global coordinate
system. By translating the geometry of the elements into origo and scaling it to unity the error
can be minimized.

Improving how to apply forces

An essential part of the simulator is the interaction. To simulate a reaction something has to
act on the system changing the state of equilibrium. As described in section 10.1 on page 115
all interaction is carried out through the modifiers. The Projective Displacement modifier is
the modifier used for simulating interactive tools like the elevator from the test scenarios. As
implied by its name, the modifier interacts with the system through nodal displacements. So
when there is detectable collision between tool and object the colliding surface nodes of the object
are displaced until they are free of collision. At the point of contact between tool and object
all forces are applied through deformation of the object’s surface. Using brittle materials even
the slightest deformation causes a huge amount of internal stress which makes the interaction
between tool and object difficult. When the tool touches the surface of the object in a way that
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seems very gently on the screen, the small surface deformation is actually causing the object to
fracture immediately. This would probably be the correct response if we did hit the object with a
sharp tool using great force, but this is not the case here. Basically the problem is the method
used when applying the forces as displacement. By displacing the surface elements at the point
of contact the internal forces peak in a single iteration before they get the chance to propagate to
neighbouring elements over multiple iterations. This has to do with the parallel approach used.
Since each element is solved in parallel they only interact when nodal force contributions are
added at the end of each iteration. Therefore forces needs to propagate through the elements
over multiple iterations. A more gentle method for applying forces could improve the interaction
between tool and object. The displacement could be gradually applied to the surface elements or
distributed over multiple elements within a certain distance to compensate for the propagation.

Improving the method for measuring internal stress

In relation to how forces are applied into the system the method for determining the maximum
level of internal stress needs improvement. The current method determines the maximal level of
stress by considering each individual element separately. If the internal stress peaks in a single
element the fracturing limit is exceeded upon impact causing the object to start fracturing before
the stress has propagated properly through the element mesh. Instead the maximum level of
stress could be measured by interpolating the stresses from neighbouring elements hereby reducing
peak values.

Improving the crack tracking algorithm

In general we have obtained good results from the local crack tracking algorithm implemented.
But there are improvements to be made. If the crack initialization has been initiated due to
an internal stress peak in a single element the algorithm performs poorly. It performs poorly
because the internal stress has not propagated properly from the point of impact and throughout
the element mesh. As a result the magnitude of the principal stress values is alternating around
zero. This causes the maximum principal stress direction to alter between the three principal
directions in a more or less random manner. The crack tracking algorithm relies on the principal
stress directions so as a consequence of the randomness the failure surface determination can
’spin out of control’. Since every element only can crack once and the number of elements is finite,
the algorithm is deterministic at all times. But the crack propagation can in rare cases form a
spiral like a winding staircase. This only occurs when the crack is propagating through parts of
the body with internal principal stress values around zero and could be avoided by improving
the stress measure as mentioned earlier or by improving the crack tracking algorithm to perform
better with seemingly random stress directions.

Re-meshing of the fractured body

When the crack tracking algorithm has determined a failure surface the intersecting elements
should be separated accordingly. The prototype does not handle the actual separation of the
fragments. To facilitate a proper evaluation of the size and shape of the fragments, separation has
to be performed. How each element has been cracked is registered as crack points determining
the intersection between the crack plane and the element edges. This representation is used for
visualizing the crack surface and can be used to separate the element mesh.
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Support composite materials

A wisdom tooth consists of different materials, primarily dentin. The material properties of
dentin are not the same throughout a tooth, different material subgroups like superficial, middle,
and deep dentin have different material properties. Besides dentin a layer of enamel is covering
the crown, this material is also divided into subgroups [GSdC04, page 324]. Currently the
prototype only supports homogeneous materials which means that all elements have the same
material properties. By implementing support for different material properties in each element,
inhomogeneous and composite materials could be simulated. It would require extending the mesh
file format, the internal data structures and making small changes to the finite element solving
technique. It could be very interesting to evaluate and test how the crack tracking performs in
composite materials.

Improve tooth mesh

The tooth mesh used in the test scenarios is modelled by hand roughly shaped to form the real
tooth borrowed. Since only the surface of the real tooth has been taken into consideration the
model does not include any internal cavities. Instead a model could be created from a volumetric
x-ray image by registering the surface curvature in each layer and assemble these to form a
volumetric contour of the tooth which includes cavities. The internal cavities will effect the
propagation of internal stress and strain making the tooth simulation more compliant with the
actual scenario.

Improving the graphical user interface

The prototype suffers from a lot of hard coded properties and setups. Few parameters, like which
mesh and material should be used, can be passed as command-line arguments at start-up. Other
than that, the code needs to be changed and recompiled. A graphical user interface capable of
changing the simulated scenario at run-time is necessary if non-technical personal should evaluate
the simulator.

Support for haptic devices

To facilitate a proper evaluation of the simulated fragmentation process the input devices must
be improved. Feedback from dentists on how the tools manoeuvre in space, how the twisting
action of the elevator tool complies to the actual scenario etc. would be helpful. Using a standard
keyboard and mouse is not sufficient if we are interested in evaluating the simulated response of
user interactions. When using the simulated tool the user tends to lose the sense of how much
force he or she actually applies to the object. Especially with brittle materials where even a very
small deformation causes huge amounts of internal stress. Implementing support for a haptic
device with force feedback would be necessary for the dentists to evaluate the sense of touch and
manoeuvrability in the simulator.
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Conclusion

The main objective of this thesis was to construct a simulation model capable of conducting
real-time structural analysis of stress and strain to be used for crack surface prediction.

For the structural analysis we constructed a simulation model based upon the finite element
method and a solver based on the Total Lagrangian Explicit Dynamics technique aimed towards
parallel execution. The finite element method with its pure style is so elegant and yet so complex
it takes years to fully master. Once the method has been implemented as the fundamental
framework for representing and solving the problem domain its true potential emerges. According
to our experiences the method turns out to be very stable, predictable and beneficial when
analysing the behaviour of stress and strain.

Recall from the problem statement that in the context of simulated surgery the demand for a robust
model, real-time execution, and plausible results is favoured over accuracy. Challenges arise when
simulating small objects like a human tooth made of a brittle material like dentin. When using an
explicit solver we need to respect the boundary conditions on the size of the time step since this is
crucial for the numerical stability of the method. The critical time step is effectively reduced when
increasing the material stiffness or decreasing the smallest edge length in the object simulated. The
real-time analysis conducted in section 11.2 on page 129 illustrates that with the given object size
and material we cannot achieve real-time simulation which strictly complies with the theoretical
laws of physics. If we compromise the theoretical laws of physics by increasing the material density
of the tooth we are allowed to extrapolate simulation time by a larger time step hereby facilitating
real-time execution. In the sense of physical interpretation the change in density, and hereby the
external forces required for deformation, is out of proportions. But in the sense of simulated
response the prediction of the crack surface looks very promising. The crack surface determined
seems unaffected since the same material stiffness is used as elaborated in section 11.8 on page 137.

Benchmarking the simulation model with the fragmentation scenario as described in section 11.7
on page 136 reveals great potential. The system equations representing the tooth model can be
solved approximately 20.000 times per second simulated on hardware as described in appendix D.1
without fine-tuning the CUDA implementation. This easily accommodates real-time interaction
and visual feedback at real-time frame rates (> 25 FPS).

We have presented a local crack tracking algorithm based upon relevant theory from fracture
mechanics in particular the principle of maximum stress direction. Though improvements can be
made as explained in section 12 on page 141 we believe the method applied shows great potential
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towards fracturing solid brittle materials. In general the failure surface as predicted by the
crack tracking algorithm looks very promising. The location and curvature of the failure surface
corresponds to the stress analysis and the intuition of how the object would actually fracture.

Using this crack tracking scheme in direct correlation with the stress and strain analysis conducted
did cause a few shortcomings. As pointed out in section 12 on page 141 the approach used for
applying forces and measuring stress needs improvement to obtain a less sensitive interaction.
To improve this method any further we need feedback on how actual teeth fracture in the given
surgical scenario. A thorough comparison of simulated contra actual tooth fragments, requires
research beyond the scope of a single master thesis.
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Appendix A

Hooke’s Law in Three Dimensions

This section provides the general relationship between stress and strain for elastic material in three
dimensions on matrix form. The general relationship between stress and strain for a homogeneous
material can be expressed by a 3× 3× 3× 3 symmetric fourth-order tensor with 81 components,
this tensor is called the material tensor and denoted C. But because both the stress and strain
tensors are symmetric 3× 3 matrices the material tensor reduces to a 6× 6 tensor (matrix) with
36 components for general anisotropic material, this matrix is called the material matrix [Str86,
page 220]. When considering isotropic materials only 21 of the 36 components differ because of
symmetry [HDSB01, page 659-661]. Using vectorization of the stress and strain matrices and
Voigt notation for the material matrix, the relationship looks as follows:{

σ
τ

}
= C

{
ε
γ

}
(A.1)

or on matrix form:



σx
σy
σz
τxy
τxz
τyz


=



C11 · · · · · · · · · · · · C16
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
C61 · · · · · · · · · · · · C66





εx
εy
εz
γxy
γxz
γyz


(A.2)

Depending of if we use linear or non-linear elasticity theory, the material matrix will look different,
here we present the material matrix for linear elasticity. Recall equation (3.23) from section 3.4
on page 33 relating normal stress and normal strain, repeated here for convince.

εx = 1
E

[σx − ν (σy + σz)]

εy = 1
E

[σy − ν (σx + σz)]

εz = 1
E

[σz − ν (σx + σy)]

Rewriting this on matrix form the normal strain relation looks as follows:
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εxεy
εz

 = 1
E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

σxσy
σz

 (A.4)

For the shearing stress and strain we recall equation (3.26) from section 3.4 on page 33:

γxy = τxy/G γyz = τyz/G γzx = τzx/G

and equation (3.25) relating G and E

G = E

2(1 + ν)
and by substituting G the equations becomes:

γxy = τxy
2(1 + ν)

E
γyz = τyz

2(1 + ν)
E

γzx = τzx
2(1 + ν)

E
(A.5)

on matrix form, it looks like this:γxγy
γz

 = 1
E

2(1 + ν) 0 0
0 2(1 + ν) 0
0 0 2(1 + ν)

τxτy
τz

 (A.6)

from the two matrices we assemble the inverse material matrix D.

D = C−1 = 1
E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

 (A.7)

the material matrix is then:

C = E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (A.8)

Remark that if we should construct the material matrix for the non-linear elasticity theory, then
C would be a function of strain [HDSB01, page 659-662]
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Test Data

B.1 Materials

Table B.1 lists the material properties that were used during testing. The material properties are
measured at room temperature and at 1013.25 hPa (1 atm) pressure.

name E ν ρ σ+
F σ−F

unit GPa kg/m3 MPa MPa
concrete 41 0.21 2400 5 40
dentin 12 0.32 2580 100 250

Table B.1: Data for test materials.

When E is the elasticity modulus, ν is Poisson’s ratio, ρ the density, σ+
F the tensile strength,

and σ−F the compressive strength. The data for concrete was found on the web1. The data for
dentin was found in the following references: ν = 0.32 [KMM03, page 19], ρ = 2580kg/m3 [BH98,
page 25], E = 12GPa [BH98, page 29], σ+

F = 100GPa, and σ−F = 250GPa [APM01, page 71].

B.2 The Meshes

We have three different kind of objects that we want to test. The first kind are simple objects,
these objects are small models that can be used to produce a minimal amount of output data,
which makes analysis easier. The second object kind is called a bar, which is a rectangular object
with dimensions 160mm× 40mm× 20mm. The third kind of objects are teeth. These are tightly
coupled to the surgical scenario that we are trying to simulate.

1http://www.engineeringtoolbox.com/concrete-properties-d_1223.html
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The simple objects
Table B.2 described the simple objects we have been using.

name # nodes # surface triangles # body tetrahedra
tetrahedron 4 4 1
box 14 24 17
sphere 119 212 328

Table B.2: Data for the simple meshes.

The Bar Object
To model the bar object, we have four meshes with different resolutions. The models have been
constructed using the Blender modelling tool, which is a tool for constructing surfaces meshes.
The models have been constructed as quadratic surface elements in Blender by subdividing the
bar as shown in figure B.1 for the four meshes.

(a) bar 20× 20× 20. (b) bar 10× 10× 10.

(c) bar 5× 5× 5. (d) bar 2.5× 2.5× 2.5.

Figure B.1: The four different bar resolutions.

Afterwards the quadratic meshes have been automatically triangularized by Blender. Then the
surface meshes must be converted into a volumetric mesh via TetGen, the whole process is
described in appendix C. The final stats of the four meshes can be seen in table B.3.

name # nodes # surface triangles # body tetrahedra
bar 20× 20× 20 113 210 263
bar 10× 10× 10 373 708 964
bar 5× 5× 5 1619 3004 4658
bar 2.5× 2.5× 2.5 6297 10214 21809

Table B.3: Data for the different bar resolutions.
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The Tooth Object
The tooth object is modeled with a few different kinds of meshes depending on in which kind of
scenario we are using it. Basicly we have two models, a test tooth and a model of a real wisdom
tooth. The test tooth is a rectangular model like the bar, but this model has a slice 50% through
the middle of the object. The test tooth is illustrated in figure B.3b on the following page. The
real tooth object comes in two variants, one with a slice 33% through the body, modelling a drill
hole, and another without the slice. These two can be seen in figure B.4 and B.3a on the next
page respectively. We also have these two variants in different resolutions, the original model and
a simplified version. The simple version has been generated using the Quadric Edge Collapse
Decimation tool in MeshLab.

(a) Tooth from the front. (b) Tooth above.

Figure B.2: The tooth test model.
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(a) Tooth with 33% slice. (b) Test tooth with 50% slice.

(c) Closeup of the drill hole in tooth with 33% slice.

Figure B.3: Tooth models with slice.

The stats for the tooth models are described in table B.4.

name # nodes # surface triangles # body tetrahedra
tooth 667 1100 2264
tooth with 33% slice 748 1198 2677
tooth (simple) 371 680 1168
tooth with 33% slice (simple) 483 826 1652
test tooth with 50% slice 646 1180 1902
test tooth high resolution with 50% slice 2763 4808 8819

Table B.4: Data for the different tooth meshes.
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Constructing Volumetric Meshes

Suppose that we have constructed the model shown in figure B.1c on page 154 (repeated below
in figure C.1a), and want to convert this model into a volumetric mesh for use in the simulator.

(a) bar 5× 5× 5. (b) bar 5× 5× 5 triangularized.

Figure C.1: The bar 5× 5× 5 as quadratic and triangularized surface mesh.

To export this surface mesh and hereby triangularize it, as illustrated in figure C.1b, choose the
following from the menu inside Blender (tested on Blender version 2.48a): [File] → [Export], and
choose the [Stanford PLY] format.

output from Blender: bar5x5x5.ply

Open this file with MeshLab (tested with version 1.2.2) and convert the file using the menu items:
[File] → [Save as...]. A dialog appears, choose the [STL File Format]. In the next dialog uncheck
the checkbox named "Binary encoding". It is importent to uncheck this checkbox because TetGen
only wants ASCII files as input.

output from MeshLab: bar5x5x5.stl

Generate the volumetric body mesh using TetGen (tested with version 1.4.2), which is a command
line tool. Enter the following into the command line:
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./tetgen -pqAzF bar5x5x5.stl

output from TetGen: bar5x5x5.1.ele, bar5x5x5.1.node, and bar5x5x5.1.smesh

the .node files contains a vertex-pool, the .ele the body mesh, and the .smesh the surface mesh,
as described in section 8 on page 102. It is these three files we load into our program. Note that
the number of surface triangles generated by TetGen from the original surface model, is a order of
magnitude larger than in the original model. This is caused by Blender’s way of triangulating the
surface, which does not take into account that we as a final goal want to generate a volumetric mesh.

The applications used are all cross platform and open source applications and can be downloaded
from the following web sites: http://www.blender.org/, http://meshlab.sourceforge.net/,
and http://tetgen.berlios.de/.
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Appendix D

Test Machines

D.1 Performance Desktop

Software: Ubuntu 9.04, 64bit with CUDA 2.0 toolkit, SDK and NVIDIA driver version 180.44.
The hardware was sponcered by the Simens Foundation.

Hardware components Type
Asus GeForce PCI-E GTX295 1792MB DDR3 Graphics card
Asus RAMPAGE II EXTREME X58 CrossFire & SLI Motherboard
Intel Core i7 920 2.66 GHz 8MB Box CPU + FAN
Corsair DDR3 PC3-1600 6GB CL9 kit XMS3 Classic RAM
Hitachi Deskstar 7K1000.B 320GB 16MB 7200RPM Harddrive
Pioneer BDC-S02BK BD-ROM/DVD-RW retail black m. sw DVD-RW
Logitech OEM U96 Optical Wheel Mouse USB Black Mouse
Logitech OEM Deluxe 250 USB keyboard black Keyboard
Antec Performance One P193 Enclosure
Corsair HX Series 1000W HX10000W 12cm SLI PSU
PNY NVIDIA Tesla C1060 GPU

Table D.1: Table showing performance desktop hardware.

D.2 Laptops

Two different Mac Book Pro version 3.1 were used, one with a graphics card with 128 MB RAM
and one with 256 MB. Both were running Apple OSX, Leopard 10.5, running CUDA 2.2 toolkit
and SDK, with graphic card drivers included in the toolkit.

Hardware components Type
NVIDIA 8600M GT, 128 MB or 258 MB Graphics card
Intel Core 2 Duo 2.2 GHz CPU
2 GB RAM

Table D.2: Table showing laptop hardware.
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Appendix E

Simulator Software

E.1 CD-ROM

On the enclosed CD-ROM you will find the following:

• The source code for the entire simulation software.

• The source code for the OpenEngine framework.

• The volumetric meshed as described in appendix B.

• Videos and screenshots from the simulations performed.

• This thesis in pdf-format.

E.2 OpenEngine Installation

The OpenEngine framework must be obtained and installed along with a few other tools and
libraries to reproduce the results obtained in this thesis. On the enclosed CD the entire source
code can be found along with the OpenEngine framework and all resources such as test data and
scenario setups. Setting up the different test scenarios requires rebuilding the source since the
implementation is only a prototype. The build system is based on cmake and tested on Windows
Vista, Ubuntu Linux and Mac OS X. All dependent tools and libraries and free of use and most
are open source.

E.3 Getting Started

To get started check out the main web site http://www.openengine.dk. All OpenEngine
resources can be accessed from the main web page. The site is wiki based and holds the source
code, documentation and useful information regarding how to get started.

E.4 Latest Version

See how to obtain a copy of the OpenEngine source code at openengine.dk/wiki/Darcs. Here
you will find a guide on how to checkout the source code through the version control system darcs
(www.darcs.net).
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Documentation
For the official OpenEngine source code documentation see: http://openengine.dk/doc/. To
keep the documentation as updated as possible nightly doxygen builds are published here.

Community
The website is the main source of new information so start looking here when questions come
to mind. The ongoing discussion on all kinds of relevant OpenEngine work takes place on the
mailing list, see openengine.dk/wiki/MailingList on how to join the list. The mailing list is
the best place to ask any OpenEngine related question.
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