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Chapter 1

Introduction

When simulating physical phenomena one must choose a model which fits the
phenomena being modeled. The level set method (LSM), is a method for
modelling phenomena that can be described in terms of moving level sets. A
level set in itself is a mathematical function that groups variables which have
the same function value. It describes a parametric function in one dimension
higher than its original domain, gaining the ability to describe more than one
not colocated level set in the same structure. A two dimensional level set is
known as a level curve or isocontour, which uses two dimensions to describe
curves. We encounter isocontours in everyday life as pressure information in
the weather forecast and terrain elevation on maps. A three dimensional level
set is known as a level surface or isosurface, and is used, as suggested be it’s
name, to describe surfaces. In general, a level set in n dimensions is used to
describe n — 1 dimensional interfaces. Mathematically a level set is define as
follows:

{(z1, ey za) Hf (21, oy n) = ¢ (1.1)

In words this means that all values of x; leading to a function value of ¢
defines the level set c. The level set in its own right does not make a simula-
tion. Unless it is evolved over times it stays the same. To evolve the level set
over time, partial differential equations (PDEs) describing the physical phe-
nomena needs to be solved. Typical phenomena modeled by the LSM includes:
computational fluid dynamics (CFG), and fire and explosion simulation.

In this report, we will explain what the level set method is and what its
applications are. Furthermore, we will provide code examples of how to imple-
ment the mathematical formulas.

In figure 1.1 on the following page we see two figures describing a two
dimensional and three dimensional view of an island. Figure 1.1a on the next
page describes an isocontour map of heights where the color indicates the height
of each point. The brighter the color the higher the point. Figure 1.1b on the
following page shows the corresponding 3d view.

For a level set representation there is an underlying function describing the
topology. Each contour corresponds to a set of points in this function with
the same value, thus we need a function which produces a field of values. In
heightmaps, it would be a function from (z,y) coordinates to a height. In
general, any function producing a field of values is sufficient.
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(a) Two dimensional view of an isocontour map  (b) Three dimensional view of figure 1.1a

Figure 1.1: Illustrations of heightmap, from: Intel Array Visualizer Gallery,
[Int]

One function that has the desired characteristics is a function known as the
signed distance function ¢.

Outline of the report

In chapter 2 on the next page, we give an in depth look on the signed dis-
tance function, describe what kinds of mathematical operations we have in our
toolbox and describe the important reinitialize function in 2.4 on page 8.

Chapter 3 on page 12 deals with evolving the interface. In 3.1 on page 15
we describe how to use an external velocity field, then in 3.2 on page 15 we
discuss using internally generated fields.

We have individually made a number of extensions to the basic level set
implementation. These extensions should show the versatility of the method
and show some practical applications. In the final part of this paper, we look
at these extensions. Each section has been written by the person responsible
for it.

First, in chapter 4 on page 19 Mikkel Vester presents a technique called
"narrow band” which increases efficiency by limiting the area of calculations.
Then, Peter Kristensen talks in chapter 5 on page 22 about his use of GPU
multi-kernel programming to significantly improve performance.

The final two chapters present practical applications of level sets. Martin
Have has investigated and implemented a way of segmenting image data using
level sets. He writes about his results in chapter 6 on page 27. In chapter 7
on page 32 Sean Geggie presents how to use level set methods for evolving an
interface to write a rudimentary simulator of incompressible fluids.



Chapter 2

Signed distance field

In a level set context, the signed distance function is essentially a measure of,
for each point in the domain how far that point is from the zero isocontour.

Since this function produces the straightforward euclidian distance, it in-
creases linearly.

In order to use an implicit representation of the surface we use a signed
distance field as the underlying function to the level set. We define the zero
isocontour of this function to be the surface.

The level set method can use implicit functions which means that the func-
tion is defined in the entire plane and not only on the surface.

The function ¢(z,y) is a signed distance function in all of R™, in our case
R2. A signed distance function ¢ is a function that given a point on the plane,
returns the distance to the surface. We have that ¢(x,y) > 0 if we are outside
the object and ¢(x,y) < 0 when we are inside the object. And last, when
¢(x,y) = 0 we are on the interface or iso-surface. The iso-surface separates
the inside and outside. Besides indicating whether we are inside or outside an
object, it also indicates how far we are from the closest point on the iso-surface
which is quite handy. For a picture of the above, see figure 2.1 on the following

page.

Example
A simple example is to consider a circle and its equation:

2?42 =2

It is defined in all points in R? and is an example of an implicit function.
Given a specific radius r, the equation of a circle defines an isocontour. If
r = 5, then the isovalue is ¢ = 5% = 25. For all the points (z,y) that evaluate
to 25 gives us the isosurface. If the value is smaller then it is inside the surface,
and outside when the value is greater. See figure 2.2 on the next page.

2.1 Cartesian grid

Since a computer has finite memory we need to come up with a way to store
our representation. A simple way to do this is to partition the region into a
grid where each square is of equal size. Normally
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Figure 2.1: The figure is borrowed from [OF02]. A implicit function, defined
in all of R?. We see that when we are inside the object then ¢ is less than zero,
larger when we are outside and zero on the interface.
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Figure 2.2: A circle, descritized into a cartesian grid. The value in each cell is

the ¢ value described in this chapter.

In figure 2.2, we see how a plane has been descritized into a cartesian grid,

showing a circle and the values of ¢.
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2.2 Initialization

In our solution we import the initial contours by loading a black and white
image and analyse it to create the SDF matching it.

To generate the SDF we start by constructing two Cartesian grids of the
same sizes as the image. One to hold the distances to the contour on the outside
of the object, and one for the inside. The “outer grid” is populated with (0,0)
if the pixel is dark and (co,00) if it’s white, and opposite for the inner grid.
This way each entry in the grid has a vector.

The next step is to calculate the actual distances to the iso-contour for
each pixel. We first traverse the image pixel by pixel from top left corner to
the lower right. For each row in the grid we go from left to right and for each
pixel calculate the length of our vector in this entry against all the neighboring
pixels vectors. The distance is the vector length of the vector created with
the x,y values in the grid. If the distance in a neighbor, plus the offset to the
current pixel, is smaller than the one already in the given pixel, it is substituted
with the new and smaller one. This way we keep the 0 values inside the object,
and use this value to propagate out to the pixels we visit afterwards.

P

Figure 2.3: Building the Signed Distance Function table, pixel by pixel from
an image.

When we reach the end of a row we go back again in the same row, and
now check the same pixels, this time checking the pixel to the right of it, also
filling out distances to the left of objects. The navigation in the grid can be
seen in figure 2.3.

We now have distances below all objects in the image. If we now run the
same pass again, just starting from the bottom and moving up, we have a
vector at each pixel with the offset to the nearest contour.

Doing the same with the opposite starting values will create a distance grid
with the values from inside objects in the image. Subtracting the distance of
the vectors in the second grid from the first will give us an ¢-value for each
pixel, and we can now save these as our ¢.

This SDF will have to be reinitialized numerous times afterwards to com-
plete it, as the contour should be a smooth line instead of a 1-pixel wide line
following pixels completely. This will be covered in section 2.4 on the following
page. When the SDF has been reinitialized it will become as smooth as the
one depicted in figure 2.2 on the previous page.
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2.3 Constructive geometry operations

As our SDF is an implicitly defined, we can use simple Boolean operations on
it. These functions, called Constructive Solid Geometry(CSG) can merge, sub-
tract and find intersections. Given two different signed distance fields, these
operations will generate another SDF matching the function. The three oper-
ations are shown in figure 2.4 and are explained below.

(a) Union (b) Subtract (c) Intersection

Figure 2.4: The three different CSG operations in three dimensions. Images
borrowed from [oC]

Union The union Boolean operation merges two interfaces, combining every-
thing inside the interfaces. This is done by maintaining everything where the
¢-value is below 0. As every pixel contains the least distance to an interface,
the only thing we have to do is to keep the lowest distance from both input
fields and thereby always having the lowest distance to either of the interfaces.

QS(%',:I/) = min(qﬁl(x,y),qbg(%y)) (21)

Intersection To get the intersection between two interfaces we remove ev-
erything not contained in either of the interfaces. By keeping the maximum
value from both fields, the pixels inside the first object will get the distance
to the second object. In the intersection the biggest distance will be the one
closest to the edge of the intersection as we are working with two negative
numbers. As we are working with SDFs the result will also comply with the
rules of an SDF.

gzﬁ(x,y) = max(qbl(x,y),qﬁg(%y)) (22)

Subtract The subtraction method is also simple. By subtracting the values
from the second field from the first, we maintain the abilities of the SDF while
removing the distances from it in the first. This results in a new SDF where
the interfaces in the second field are removed from the first.

¢(Iay) = maX((bl(I,y)afd)Q(xay)) (23)

2.4 Reinitialization

The main advantage of representing an implicit counture or surface as a signed
distance field, is that the length of the gradient is one. This is also exactly
what defines a signed distance field.
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When constructing or manipulating a SDF defined on a Cartesian grid, the
result is not always a SDF. So to enable further calculations or iterations of an
algorithm the result must be turned into a new SDF that reflects the changes
done by the calculations. This process is called reinitialization of the implicit
function, and can be done several different ways.

Algorithms for reinitializing SDFs focus on reinitializing the whole domain,
and at the same time keeping the zero level set as fixed as possible. This means
that the process disrupts data outside the zero level set, which depending on
the type of phenomena being modeled can be problematic. For the problems
we are modelling this is not an issue and is therefore not of relevance here.

Before diving into the algorithms a good question is, how often must the
implicit function be reinitialized? There is no good answer to this question,
because it depends on how rapidly the contour is changing. In our work we
have been reinitializing after every change, which ensures that this is not a
source of error.

The two most used algorithmic approaches to reinitialization are: meth-
ods that geometrically calculate distances to the contour or surface, and PDE
based methods that numerically approximate solutions to the Eikonal equation:
[|[Vé|| =1 [Bri08, page 89].

When initializing the implicit contour in section 2.2 on page 7 we used
an algorithm that geometrically calculated the distance to the contour. So
the natural choice should be to also use this algorithm for reinitializing, but
because the algorithm does not calculate the SDF precise enough, we cannot
use the algorithm when reinitializing. Furthermore if we had used this type
of algorithm, we would have had to construct the contour before invoking the
algorithm. Constructing the contour is very expensive, and is something that
should be avoided at almost all cost when using the level set method. Instead
we have chosen to use PDEs to solve the Eikonal equation.

The PDE way of reinitializing

When using the PDE way of reinitializing the level set, we solve the following
PDE [OF02, page 65-66]:

¢+ S(do)(IVe| —1) =0 (2.4)

Where ¢ is the SDF being evolved as a PDE, and ¢g, is the initial SDF
given as input to the reinitialization algorithm, which has not been altered by
the process of solving the PDE. The function S(¢g) gives the sign of the SDF,
like the following function, described in [OF02, page 66]:

-1 if ¢ <0,
S(p) =10 if ¢ =0, (2.5)
1 if ¢ > 0.

When using this approach of reinitializing the SDF, the grid points in ¢
that are nearest to the contour is reinitialized first, and then propagated in the
normal direction from the zero level set, hereby reinitializing the grid points in
layers around the zero level set, reinitializing a new layer each iteration.

This algorithm is relatively slow if all grid points need to be reinitialized,
because it only reinitializes one layer in each iteration when solving the PDE.
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This means that the PDE, on a two-dimensional domain, must be iterated
\/ width? x height? times to make sure that the algorithm has reinitialized the
whole domain.

But because the algorithm has the property of reinitializing the SDF in
layers it is of special interest in regards to performance when using a narrow
band level set as described in section 4 on page 19. Here only three or four
layers around the SDF needs to be reinitialized, making the algorithm ideal for
the narrow band approach.

The sign function S

Because equation 2.4 is a hyperbolic PDE, we need to use a smeared out version
of equation (2.5). One way of smearing the function is to use equation (2.6).

o
o5 + (Az)?

The difference between equation (2.5) and equation (2.6) can more easily
be seen by looking at plots of the two functions, as depicted in figure 2.5.

S(po) = (2.6)

1.2, 1.2,
08 08 “,——'
>
y y '/
0.4 0.4 '/
'0
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"
2.4 16 0.8 [ 08 16 24 24 1.6 0.8 0. 08 16 24
X ’ X
"
0.41 ""04‘
"
'l
"
"
0.87 —’_a‘ 0.8t
1.2 1.2
(a) Plot of equation (2.5) (b) Plot of equation (2.6), Az =1

Figure 2.5: Illustrations of S
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Implementation

The implementation of how to solve the PDE in equation (2.4), uses the de-
scription of Godunov’s scheme from [OF02, page 58] in the spatial dimensions,
and a forward Euler in the temporal dimension, as described in formula (1.3)
in [OF02, page 10].

( Tex<float> phi0O = GetPhi(); Tex<float> phin = GetPhi();
for (unsigned int i = 0; i<iterations; i++) {
for (unsigned int x = 0; x < width; x++) {
for (unsigned int y = 0; y < height; y++) {
float xy = phi(x, y);
float phiXPlus = 0.0f;
float phiXMinus = 0.0f;
float phiYPlus = 0.0f;
float phiYMinus = 0.0f;
if (x != width-1) phiXPlus = (phi(x+1l, y) - xvy);
if (x !'= 0) phiXMinus = (xy - phi(x-1, vy));
if (y !'=height-1) phiYPlus = (phi(x, y+1) - xvy);
if (y !'= 0) phiYMinus = (xy - phi(x, y-1));
float dXSquared = 0;
float dYSquared = 0;
float a = phi0(x,vy);
if (a > 0) {
// formula 6.3 page 58
float max = std::max(phiXMinus, 0.0f);
float min = std::min(phiXPlus, 0.0f);
dXSquared = std::max (maxxmax, minsmin);
max = std::max (phiYMinus, 0.0f);
min = std::min(phiYPlus, 0.0f);
dYSquared = std::max (maxxmax, min*min);
} else {
// formula 6.4 page 58
float max = std::max(phiXPlus, 0.0f);
float min = std::min(phiXMinus, 0.0f);
dXSquared = std::max (max*max, minsmin);
max = std::max (phiYPlus, 0.0f);
min = std::min(phiYMinus, 0.0f);
dYSquared = std::max (max*max, minsmin);

}
float normSquared dXSquared + d¥YSquared;
float norm sgrt (normSquared) ;

// Using the S(phi) sign formula 7.6 on page 67
float sign phiO(x,y) / sqrt(phiO(x,y)*phi0(x,y)
float dt 3; // A stabil CFL condition

phin (x,vy) — signx (norm - 1)=xdt;

+ 1);

0.
phi (x,y)

}
for (unsigned int y=0; y<height ; y++)
for (unsigned int x=0; x<width; x++)

phi(x,y) = phin(x,vy);
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Evolving the interface

3.1 Externally generated velocity field

The process of moving an implicit surface given by a signed distance function
is known as level set methods. Level set methods are ways of influencing signed
distance fields to move the implicit surfaces contained therein. This is done by
solving certain equations of motion that we will describe in this section.

First we distinguish between Lagrangian and Eulerian representations of the
surface. To understand the difference between the two viewpoints we imagine
how we could measure the movement of e.g. a fluid. In the Eulerian viewpoint
we would place measuring devices at fixed points in the fluid, and continues
sample the velocity of the fluid, the measured value is taken as a avarage for
an area. For convenience the measuring devices are almost always placed in a
uniform grid, with square areas as illustrated in figure 3.1a.
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(a) Eulerian (b) Lagrangian

Figure 3.1: The eulerian and the lagrangian viewpoints.

In the lagrangian viewpoint we let the measuring devices move along the
current in the fluid and take measurements at different locations in the fluid.
Here we imagine that the measuring device is part of the fluid or a particle

12
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that the fluid moves around. Figure 3.1b shows how the current has moved the
devices as time has progressed.

These two viewpoints are tightly coupled to the way the simulation data is
represented and visuliazed. Lets say that we are interested in visualizing the
surface of the substance. The Lagrangian data is keept as points in space and
moved around by updating the position of the points. This can be visualized
by imposing that the points define a surface and rendered as geometry e.g.
triangles between the points. The eulerian viewpoint is seen as a 3D grid.
Each cell in the grid has a density that describes how much substance the cell
contains (0-100%).

In the Lagrangian representation, movement by a velocity field can be ac-
complished by solving the ordinary differential equation:

de o

pri V (Z) (3.1)
As discussed previously, however, using implicit surfaces by an Eulerian repre-
sentation rather than an explicit Lagrangian representation, such as a polygon
mesh, provides certain benifits. Nowhere is this more clear than when im-
plementing moving surfaces. Moving a surface built from triangles presents a
number of problems. First and foremost, it becomes necessary to determine
whether the surface starts to overlap itself and what to do if it does. Clearly
this is problematic when dealing with polygons, since there is no obvious or
“natural” way of merging two polygons which have overlapped.

> ¥
>y

Figure 3.2: Two moving surface representations. Top: Explicit representa-
tion, merging is a problem. Bottom: Implicit surface by signed distance field,
merging is automatic.

With implicit surfaces, this problem disappears, since an implicit surface is
just that: implicit. If two “interior” areas of the implicit function “overlaps”
it simply means that that area of the domain is in the interior of the function,
and the interface will wrap around it as appropriate. See figure 3.2 for an
illustration of the advantage of implicit surfaces.
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The level set equation

We examine now how to evolve an implicit surface, or interface, by affecting the
underlying implicit function with an externally generated velocity field. This
process of convection in an Fulerian representation is defined by equation 3.2

G +V V=0 (3.2)

This partial differential equation is referred to as the level set equation due to
its central importance to level set methods. It describes the evolution of an
implicit function ¢ by a velocity field V. Vo, of course, is the gradient of the
function. From this, we have

V-Vé = ud, + v, (3.3)

Where ¢, and ¢, are the spacial derivatives in the first two dimensions respec-
tively and v and v are the two components of the velocity vector.

Since we are essentially only interested in moving the implicit surface or
interface with the velocity field, it is sufficient for the field to contain values
only in a band around the interface. For simplicity of implementation, however,
we assume that the field is defined across the entire domain.

For concrete implementation purposes, to evolve an implicit surface in an
n-dimensional domain, the velocity field is an n-dimensional cartesian grid of
n-dimensional vectors. In our two-dimensional case, that means all velocity
fields are double arrays of two-value vectors.

Upwind differencing

How then, do we numerically solve equation 3.27 As we know, the implicit
function is discretized into a cartesian grid of cells with Ax representing the
width and height of these cells in the theoretical continuous field. In our case
this is a discretized signed distance field, each cell in the grid being of course
a number representing the distance from the zero-isocountour. So too is the
velocity field represented discretely with vectors, as mentioned previously.

Now, since motion takes place across time, we will need discretize our mo-
tion across time as well. We discretize time into steps of At. The n’th time
step we denote t" and the state of the cartesian grid of our signed distance
field at that time as ¢™. Since the velocity also may change over time, this too
is separated into discrete steps vn.

One way of discretizing equation 3.2 is the simple forward Fuler method.
Equation 3.4 shows how the time-dependant term ¢; of equation 3.2 is dis-
cretized by forward Euler.

¢n+1 _ ¢n . N
Al +V"-Ve" =0 (3.4)
This is a first-order accurate method for time discretization, which [OF02]
suggests is adequate, based on practical experience. Expanding the gradient
as in 3.3 we get

¢n+1 _ ¢n

o ugh vy =0 (3.5)
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To calculate this equation, then, we must find the spatial derivatives in the
x and y directions. For this we can again use a first-order difference method.
However, we need to pick a direction in which to calculate the derivative. That
is, do we use

Giy1 — G;

D¢~ o or (3.6)
D ¢~ ¢~ b1 _Ai“ (3.7)

These being forward and backwards difference, respectively. Naturally, we
choose by examining the velocities given for the cell in question in the velocity
field and take the difference in the direction of change. Not surprisingly, the
term “Upwind differencing” is derived from this way of sampling in the direction
of change. Although it might seem natural to simply use a central difference,
according to [OF02], this is unstable with forward Euler time discretization.

The method, then, for each cell in the grid of the implicit function is as
follows:

e Look up the velocity in the corresponding cell in the velocity field.
e Calculate the appropriate forward/backwards difference

e From these, arrive at the partial spatial derivative

e Store the new cell value

When this has been done for the entire grid, overwrite it with the new values.
Essentially, we are “collecting” the values that need to be written to the current
cell of the grid in the direction they come from via the velocity grid.

To ensure stability of this method, [OF02] recommends limiting the time-
step according to the Courant-Friedrich-Lewy condition (CFL for short) which
can be written as

At< BT (3.8)
max {|u|}
By enforcing this, we increase the guarantee that small errors are not amplified
over time. The effects of an unstable method are commonly referred to as
“exploding”, for obvious reasons.

Finally, [OF02] recommends methods such as an essentially nonoscillatory
(ENO) way of computing more accurate spatial differences and total variation
diminishing (TVD) Runge-Kutta for further accuracy in temporal difference.
In short, ENO is a polynomial forward or backward difference function and
Runge-Kutta is essentially a multiple-step version of the simpler forward Euler
method we use.

The above method, then, is the general solution to the problem of convecting
an implicit surface by an externally generated velocity field. Using it, we may
arbitrarily define our field of motion to produce motion in any way we wish.

3.2 Internally generated velocity field

In contrast to section 3.1, this section describes motion using a internally gen-
erated velocity field.
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Motion in the normal direction

One of the most simple things we can do, is to move the interface in the normal
direction IV using a constant a, efficiently scaling the iso-surface.
From equation 3.2 on page 14 we have:

G +V -Vo=0 (3.9)

Since aN has the same direction as V¢, we have the following:

o Voo

aN Vo =arg Vo
_|Vel®
- = a|V¢|

With corresponds to this level set equation:

¢ +alVe| =0 (3.10)

At this point, the point of the signed distances field is clear, if ¢ is a SDF,
then |V¢| = 1. This means that we can solve (3.2) very simply using the
forward euler method (see equation 3.6).

This corresponds to the following code:

for (unsigned int x=0; x<width; x++) {
for (unsigned int y=0; y<height; y++) {
phi(x,y) += -a;
}

A sample is shown in figure 3.3 where the AU logo is expanded with a = 1.0
for 6 and 20 iterations.

/v v HNo

(a) The original logo (b) After 6 iterations (c) After 20 iterations

Figure 3.3: The AU logo after expanding with a = 1.0 for 6 and 20 iterations

Mean-Curvature

Another interesting thing we can do with a level set, is to move the interface

in the normal direction with a velocity proportional to its curvature (this is

called mean-curvature). The effect of this is to soften or sharpen the interface.
To do this we need the following velocity field:

V = —bkN (3.11)
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Where k is the curvature, and b > 0 is a constant describing the speed of
the motion.
This corresponds to the level set equation:

¢ — bk| V| =0 (3.12)

This is a parabolic equation, so to discretize it we need to use a new ap-
proach.
We start by exploring the curvature . It is defined as:

K=V (gj) (3.13)

When ¢ is a SDF, then |V¢| = 1, which simplifies our equation to: x = V2¢.
Which is the laplacian operator: k = A¢. In this context, A¢ is defined as:

A¢ = ¢x3c + ¢yy (3.14)
¢z and ¢y, can be solved using central difference:
_ Pit1 — 2¢; + ¢i1

DID-¢ ~ 3.15

Do — (315)

Again the forward Euler method can be used, but we have to use a small
time step according to [OF02, page 44]:

2 2

If we respect these, then the implementation is straight forward:
rfor(unsigned int x=1; x<width-1; x++) { )
for (unsigned int y=1; y<height-1; y++) {
const float dx = 1.0;
float phi_xx = (phi(x+1,y) - 2*phi(x,y) + phi(x-1,y))/ (dx*dx);
float phi_yy (phi (x,y+1) — 2+*phi(x,y) + phi(x,y-1))/ (dx*dx);

float kappa = phi_xx + phi_yy;
phi(x,y) += kappa * a; //mean curvature

=
-

/v /v -

(a) The original logo (b) After 20 iterations (c) After 100 iterations

Figure 3.4: The AU logo after mean-curvature with ¢ = 0.4 for 20 and 100
iterations

This is demonstrated in figure 3.4. The logo becomes less sharp, and if
continued long enough, it will disappear.
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Morph

Another simple way of evolving the interface is a technique called “morphing”.
Given two signed distance fields, we can “morph” one into the other simply
by using the difference in fields in place of velocity of change. This is a simple
idea which can yield visually impressive results.

The operation of morphing ¢; to ¢- is captured in this equation:

¢t =1+ (92— ¢1) - —a (3.17)

Figure 3.5 shows the intuition behind the equation. The parts of the field
that are “inside” one curve and “outside” another yield higher differences than
the parts that are inside or outside both curves. Depending on the sign of
a, the equation adds a term to ¢; that increases or decreases its values in
correspondance to the difference of the fields. The result of this is that the
level sets of one field are evolved to resemble the curves of the other.

++

Figure 3.5: Morphing two SDFs

The implementation is simply as follows:

for (unsigned int x=0; x<width; x++) {
for (unsigned int y=0; y<height; y++) {
phi(x,y) += (phi(x,y) - phi2(x,y)) * -a; //morph
}




Chapter 4

Narrow-band

When working with level sets you almost always work with small objects in a
much bigger context. This is due to the fact that our level set is defined in on a
Cartesian grid, and we have to manipulate all grid cells(from here on referred
to as the workspace) to make sure the SDF is always welldefined, meaning the
length of the gradient is equal to one. This is a time consuming process as
described in section 2.4 on page 8. A solution to make the processes faster is
to only work on the area of the SDF just beside the contour of interest. This
method is called the narrow band method and is described in [AS95]. A narrow
band of the Aarhus University(AU) logo can be seen in figure 4.1 where (a)
shows the input figure given to the program, and (b) showing the narrow band
generated from the interface of the input.

I’ T

(a) The input (b) The Narrow band

Figure 4.1: Visualizing the narrow band of the AU logo.

4.1 Idea of the Narrow Band Method

The basic idea of the method is to narrow down the amount of grid cells we
are working on, to include as few as possible without loosing accuracy. This
is done by keeping a band of v calls around the interface so we only update
the SDF only where —vy < ¢(z,y) < 7. When we solve the level set equation
within the narrow band, we use the values of the neighboring cells. On the
edge of the band we cannot be sure the values of their neighbors are valid as
they aren’t in the narrow band, and this is where the outer band, also called
an safety band, comes in to play. All the neighbors on both sides of our narrow
band is added to this set. The only job of the outer band is to supply the inner
band with information when calculating on the border of the band. Because
we know how big + is, it is safe to assume that the distance from the outer

19
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band to ¢ = 0 is more or less 7. Setting the value of all cells in the outer band
to v is therefore safe if we promise to reinitialize the band, after solving the
level set equation, to make the length of the gradients one. This will make the
whole narrow band including the outer band satisfy the requirements of the
SDF and we only have to reinitialize inside the band itself. Hence the program
flow is changed a little. We first evolve the interface by solving the level set
equation on the SDF. We then recalibrate the narrow band to fit the newly
generated SDF and then at the end reinitialize inside the narrow band.

Solve level set equation
Update narrow band
Reinitialize

Figure 4.2: Program flow with narrow band

To decide the size of v, and thereby the width of the narrow band, we have
to look at the maximum distance the interface can move in a time step. In our
implementation this boundary is at one cell per time step, therefore a narrow
band of size 3 around the interface is sufficient. As seen in figure 4.1 on the
preceding page the band reaches just outside the interface border as displayed
in red. The green outline around the red band is the outer safety band.

(a) The output (b) Without narrow band (¢) With narrow band

Figure 4.3: A morph between two figures (AU-logo to a circle) showing the
gradient map with and without the narrow band method. In the gradient map
we have also shown places where the length of the gradient is different from
zero, here depicted with the color black.

As seen in figure 4.3, the narrow band method is powerful. Using the
method we have significantly lowered the number of grid cells needed to visit
while working with the SDF, simultaneously we have reduced the number of
times needed to reinitialize. If we only reinitialize once it is clear that the
method without narrow band is more correct overall, though it contains large
amounts of wrong data around the interface, making calculations faulty. The
narrow band version is clearly wrong in the majority of the cells, but around
the interface we see that the narrow band is in effect and the one reinitialisation
per time step almost covers our needs.
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4.2 Implementation

To represent our Narrow band we need a data structure to hold the new in-
formation. Normally we traverse the workspace linearly and know which cells
have been updated, and which we are going to visit next. In the narrow band
approach we have no linearity and, the narrow band can be divided into many
detached objects in the workspace. Therefore we need another way to traverse
it than run through (x,y) in the height and width of the workspace. Our solu-
tion is to keep every grid cell in a vector with (x,y) coordinates, and append
the vectors of the cells inside the narrow band to a list. This list will then
contain the complete narrow band, both inner and outer band. To distinguish
the two bands from each other we are using a two dimensional matrix holding
a 1 if the said cell is in the inner band, and a 2 if it is in the outer, 0 means the
cell is in neither. We also maintain an integer containing the number of cells
inside the narrow band.

To build the narrow band, the technique is simply to traverse the SDF and
check the distance to an interface. If we are within the v range of it, we are
inside the narrow band, and the cell is added to the set of cells inside the band.
Simultaneously we add the said cell to the matrix telling which of the bands it
is contained in. For simplicity we can in the same traversal check if it should
be in the outer band if it isn’t inside the inner band. As it does not matter if
we take too much in the outer band, we here just check if it is in v range + 2
cells. We take more than needed, but we are on the safe side. The type of the
cells in the outer band is of course added to the type matrix. This is done as
shown by this code:

( for (unsigned int x=0; x<width; x++) )
for (unsigned int y=0; y<height; y++) {

float phival = fabs((xphi) (x, y));

if (phival <= narrowBandWidth) {
//Part of the inner band
narrowBand[narrowBandSize++] = (Vector<2,int> (x,y));
nbType (x,y) = 1;

} else if (phival <= narrowBandWidth + 2.0f) {
//Part of the outer(safety) band

narrowBand[narrowBandSize++] = (Vector<2,int> (x,y));
nbType (x,y) = 2;
} else {
nbType (x,y) = 0;
}
}
\& _/

4.3 Discussion

Testing the narrow band method we got an significant speedup. We did not
get to implement a faster version for rebuilding the narrow band as explained
in [PMO™99]. In this version of the narrow band they rebuild the narrow band
inside the old narrow band. This can be done as the interface only moves
one cell per time step. Therefore we can build the new inner band inside the
old narrow band. The new outer band can then be found be traversing the
neighbors of the new inner band.
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CUDA

Improving the performance of our algorithms can be done in many ways, but
one of the more obvious ones is using parallel computing!

Currently, the most accessible way to run programs in parallel is using the
graphics computation unit (GPU). Modern GPUs are very powerful, and major
manufactures have released software development kits (SDK) for utilising the
GPU for general purpose computation.

One of these SDKs is nVidias CUDA[nVi]. The only thing needed to use
CUDA is a nvidia graphics card that is relatively new (a few years tops), and
the free SDK found at the CUDA website.

As GPUs were developed to render graphics, they are optimized to work on
spatially coherent data. This makes many of our algorithms a natural target,
as we often only need information about neighbouring data points.

5.1 Threads

The CUDA programming model is centered about data parallel programs. This
means that you spawn a thread for each element in your data, which runs the
same program. In our case, this means spawning a thread for each pixel.
Luckily our algorithms are already in this format, just with two for-loops
iterating over the pixels.

Most of our algorithms uses this pattern:

-
for (unsigned int i = 0; i<iterations; i++) {

for (unsigned int x = 0; x < width; x++) {
processPixel () ;

}

7
N

Which is easily translated into:

const dim3 blockSize (32,16,1);
const dim3 gridSize (width/blockSize.x, height/blockSize.y);
processPixel<<gridSize,blockSize>>();

(S

The grid and block size are telling CUDA how many threads to spawn.
A grid contains many blocks, and each block contain many threads. In this

sample, each block have 32 x 16 threads, and the grid have %éth X %
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blocks. If width and height are divisible with 32 and 16, this corresponds to
width X height threads.

In CUDA 2.3, a block can contain no more than 512 threads, hence the
block size of 32 - 16 = 512.

5.2 Memory

Memory in CUDA is divided in 3 parts. The Per-thread local memory than
only a single thread can access. Per-block shared memory which is accessible
to every thread in the same block and the global memory that every thread
can access. This can be seen in figure 5.1. Here the global memory is separated
into global, constant and texture memory, and local memory is separated into
local memory and registers.

GPU Grid

Block (0, 0) Block (1, 0)

Thread (0, 0) Thread (1, 0)| | Thread (0, 0) Thread (1, 0)

CPU

Figure 5.1: The CUDA Memory Model (from [nVi])

The difference between the shared and global memory is the speed. The
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shared memory is much faster, but also much smaller (typically 16 KB). Its
also inaccessible from threads in different blocks.

This make it challenging to utilise the whole GPU, as the algorithms needs
to be rethought.

One way to do this could be letting each thread fetch it’s value (¢ in our
case) into the shared memory. Then if the threads are organized in block
where neighbouring threads are in the same block, each thread can fetch the
neighbouring pixels from the shared memory.

Such an optimization creates new challenges, as the threads near the border
cannot cross over to the next blocks shared memory. The solution is to pad
the area around the edges of the blocks, so if a pixel is on the border, its run
by both blocks. This makes us run a few more threads than we have pixels,
but it increases the speed as we can exploit the shared memory.

A more simple type of optimization, is to use texture memory. GPUs often
need fast access to textures, so it have a texture cache optimized for 2D spatial
locality. This means that fetching data from a texture will make fetching the
neighbouring pixels faster.

5.3 Implementation

After a quick time profiling, we found that Reinitialize is where our pro-
gram spends most of its time, so this was the first to be converted into CUDA.

The following is a very naive conversion. The code is almost the same as
the original in section 2.4, and there are no clever usage of shared memory or
other optimizing tricks.

-
#define GetPhi (phi,x,y,w) phi[x+wx (y)]

__global__ wvoid reinit (float =xphi, float*x phi0O, floatx phin,
unsigned int width, unsigned int height) {

uint x = _ _umul24 (blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24 (blockIdx.y, blockDim.y) + threadIdx.y;
if (x > width || y > height)

return;

float xy = GetPhi (phi, x,y,width);

float phiXPlus = 0.0f;
float phiXMinus = 0.0f;
float phiYPlus = 0.0f;
float phiYMinus = 0.0f;
if (x != width-1) phiXPlus = (GetPhi (phi,x+1, y,width) - xy);
if (x != 0) phiXMinus = (xy - GetPhi (phi,x-1, y,width));

if (y !=height-1) phiYPlus
if (y !'= 0) phiYMinus

(GetPhi (phi, x, y+1,width) - xy);
(xy — GetPhi(phi,x, y-1,width));

/+ GetPhi(phin,z,y,width) = phiYPlus; x/
/% return; x/

float dXSquared 0;

float d¥YSquared = 0;

float a = GetPhi (phiO, x,y,width);
if (a > 0) {
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// formula 6.3 page 58
float _max = max (phiXMinus, 0.0f);
float _min = min(phiXPlus, 0.0f);

dXSquared = max (_max*_max, _minx_min);

_max = max (phiYMinus, 0.0f);

_min = min(phiYPlus, 0.0f);

dYSquared = max(_max*_max, _minx_min);
} else {

// formula 6.4 page 58

float _max = max (phiXPlus, 0.0f);
float _min = min(phiXMinus, 0.0f);
dXSquared = max (_max*_max, _minx_min);

_max = max (phiYPlus, 0.0f);
_min = min(phiYMinus, 0.0f);
dYSquared = max(_max*_max, _minx_min);

float normSquared = dXSquared + dYSquared;
float norm = sgrt (normSquared) ;

// Using the S(phi) sign formula 7.6 on page 67
//float sign = phi(z,y) / sqrt(phi(z,y)*xphi(z,y) + normSquared);
float sign = GetPhi (phiO,x,y,width) /
sqgrt (GetPhi (phi0, x, y, width) *xGetPhi (phi0, x,y,width) + 1);
float t = 0.3; // A stabil CFL condition
GetPhi (phin, x,y,width) = GetPhi (phi, x,y,width) - signx(norm - 1)=xt;

}

\. J

Coping the data, and starting the threads are done in the following code:

e N
void cu_Reinit (floatx data,

unsigned int w,

unsigned int h,

unsigned int iterations) {
float* phiData;
floatx phiOData;
floatx phinData;

cudaMalloc ( (voidx*) &phiData, sizeof (float) xwxh);
cudaMalloc ( (voidxx) &phiOData, sizeof (float) xwxh);
cudaMalloc ( (voidxx) &phinData, sizeof (float) xwxh);
cudaMemcpy ( (voidx)phiData, (void«*)data, sizeof (float)xwxh,

cudaMemcpyHostToDevice) ;

cudaMemcpy ( (voidx)phiOData, (void«x)data, sizeof (float) xwxh,
cudaMemcpyHostToDevice) ;

cudaMemcpy ( (voidx)phinData, (void«x)data, sizeof (float)xwxh,
cudaMemcpyHostToDevice) ;

CHECK_FOR_CUDA_ERROR() ;

const dim3 blockSize (32,16,1);
const dim3 gridSize (w/blockSize.x, h/blockSize.y);

for (unsigned int i=0;i<iterations;i++) {
reinit<<<gridSize,blockSize>>> (phiData,phiOData,phinData,w,h);
floatx tmp = phiData;
phiData = phinData;
phinData = tmp;
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cudaThreadSynchronize () ;
CHECK_FOR_CUDA_ERROR() ;
}

cudaMemcpy ( (voidx)data, (voidx)phiData,
sizeof (float) »wxh, cudaMemcpyDeviceToHost) ;
CHECK_FOR_CUDA_ERROR() ;
cudaFree (phibata) ;
cudaFree (phiOData) ;
cudaFree (phinData) ;

}

S

5.4 Results & Conclusion

The results in table 5.1 are taken from a system with a 1.8 Ghz Intel Core 2
Duo CPU, 4 GB RAM and a 512MB nVidia GeForce 9600M GT. The time is
an average of about 100 iterations of the algorithm.

Algorithm CPU (us) | GPU (us) | Speedup (X)
Reinitialization 417825 136675 3.0570697
- with textures - 100006 4.1779993

Table 5.1: GPU vs. CPU comparison

The results shows a significant speedup. Using a quite naive implementation
the speedup is easily tripled on a inexpensive consumer graphics card.

Using textures to cache lookup, we gain even more performance, going from
3x to 4x. If we’d had more time more optimization techniques could have been
applied. E.g. using shared memory which most likely would have improved
performance even more.

A visual ilustration of the sppedup can be seen in figure 5.2. Here the AU
logo is morphed into a circle, and after 30 seconds the GPU version is way
ahead of the CPU version.

/v . . &

(a) Original AU logo (b) Circle (c) GPU version (d) CPU version

Figure 5.2: Comparision of CPU vs. GPU on morph
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Segmentation

e ¢ © © O

(a) (b) (c) (d) (e)

Figure 6.1: A segmentation method in progress showing the segmentation at
iteration 75, 150, 225, 250 and 275.

Segmentation is an incredibly important area of interest when it comes
to Medical Imaging. Segmentation is the problem of partitioning a digital
image into multiple segments that are more meaningful and easier to analyse.
Typically one would like to locate the boundaries in a picture such as lines,
curves, etc.

The result of a segmentation is a set of segments that covers the entire
picture. All pixels in each segment shares properties based one how the picture
is segmented. It could be color or intensity. Adjecent regions are significantly
different based on these characteristics.

A technique is to initially start inside the object you want to segment and
then expand it like a balloon until the surface reaches the edge of the contour.

To illustrate segmentation in a level set model, I have implemented two
different algorithms which are described in sections 6.2 on the following page
and 6.3 on page 29.

6.1 Implicit vs. Explicit representation

Since segmentation techniques normally are used to locate organs in MR scans
or measure the volume of tissue, eg. from real people, it is very important that
the segmentation is correct and that it is fast. Therefore, we have to convince
ourselves that our technique can find the contour in images even though they
can contain a lot of noise and artefacts.

In an explicit representation, we have the problem that when we only rep-
resent the surface, we run into trouble when segmenting artefacts as can be
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seen in figure 6.2. The problem is that the segmentation can not figure out to
skip over the artefacts which resolves in a segmentation that never terminates.
There exist algorithms that try to skip the artefacts, but they are prone to
failure.

Figure 6.2: We see how the segmentation, using an explicit representation has
trouble with artefacts in the picture. The surface is about to wrap around it
self creating an endless loop around the artefact.

In an implicit representation, the problem vanishes since we look at the
larger picture and not just the boundary of the current segmentation. Because
we use a level set to solve the problem, when our algorithm reaches an artefact
the solver simply goes around it and merge at the other side.

6.2 Algorithm 1 - Moving in the normal direction

In this algorithm I have been inspired by the balloon algorithm from [BMS97].
To segment a part of an image, we start with a small area inside the area we
want to segment and grow it in the normal direction if we have not reached
the boundary yet. We know if we have hit the boundary if the value of the
pixel is smaller/larger than a specified treshold we define. If we have crossed
the border (again based on the threshold value), we shrink that point of the
surface by going in the reverse direction of the normal.

Figure 6.3: In the figure, we see how the segmentation grows in the normal
direction

Basically we solve the following equation:
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¢ +alVe| =0 (6.1)

which is easily achieved using the code below:
e N
for (unsigned int x=0; x<width; x++) {
for (unsigned int y=0; y<height; y++) {
[...]
if (picture(x,y) > threshold) {
phi(x,y) += a;
growth += -a;
} else {
phi(x,y) += -a;
growth += a;

if (growth / ‘‘number of pixels moving’’ < tTreshold) {
done = true;

}

(S

We want to be able to terminate the segmentation when we have found the
correct area. We do this by looking at the zero iso-surface and check how much
the surface is moving. When it slows down we know that we have found the
area we want to segment.

This is a quite simple algorithm which surprisingly produces good results.
On a picture of dimensions 512 x 512 it stops after approximately 250-300
iterations which is quite good. We could do this many times faster if we choose
to implement the reinitialization step on the GPU via CUDA.

In order to make the segmentation algorithm stop when it reaches the
boundary, we calculate the following factor:

factor = growth / number of pixels moving on iso-surface

Which is a number that goes towards zero when the iso surface stops mov-
ing. To see this, think about what happens when we have reached the boundary.
since about half of the iso-surface is increased and the other half is going to
be decreased the factor should be approximately zero. tThreshold is set to
0.03 through experiments.

6.3 Algortihm 2 - Edge detection

Algorithm 2 is more advanced and tries to find the edges beforehand to increase
the likelyhood that we segment the correct part, see [MBZWO02]. It builds a
series of images and solves the following equation:

o¢

i grad(D) - grad(¢) =0 (6.2)
t where image D has the edge information with an edge denoted as a one and
a nonedge as a zero.

To compute image D we have to go through a number of steps. First,

we compute an image A where every pixel is the norm of the gradient in the
original image. Secondly, we compute an image B where every pixel is the
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o

Figure 6.4: We see the result of computing the final image in the preprocessing
step where the algorithm calculates the edges. On the left, we see the original
picture we want to segment. On the right, the final image we use in the
segmentation algorithm is showed. The final picture is generated by spotting
zero crossings and by that creating a picture containing the edge information
we need.

gradient in image A dotted with the normal in the original image. Compute an
image C where every pixel is the absolute value of the gradient in the original
image dotted with the normal. With this information, it is now possible to
calculate the zero crossings. A zero crossing is defined to be either that one of
the neighbouring pixels have a different sign than the current pixel, or that with
the value of the current pixel is zero. And finally, if the corresponding value
in image C is larger than some specified value then it is also a zero crossing.
The final image, D, is calcutated by setting all pixels with an edge to one and
all non-edges to zero. We need to run the reinitialization method on the image
to make sure that all distances are correct. In this particulary instance, we
need to do a thousand iterations. These calculations are all computed as a
preprocessing step before we iteratively solve the level set equation (6.2 on the
previous page).
To solve the level set equation we implement the following code:

for (unsigned int x=0; x<width; x++) {
for (unsigned int y=0; y<height; y++) {
phi(x,y) += (gradD (x,y) * gradPhi(x,y)) *» time;
}

Where time is the factor:

Az
max{|gradient(z, y)|}

When solving the level set equation, for every pixel we get a vector that
goes away from the iso-surface and points at the closest edge in the normal
direction.
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6.4 Conclusion

I have implemented two algorithms for segmenting pictures where the first is
a simple algorithm that grows only based on the normal of the iso-surface and
stops its segmentation when the iso-surface encounters pixelvalues that cross
the threshold specified.

The second algorithm is more advanced and makes good use of the infor-
mation from the gradient by growing in the direction of the edges and the
normal.

Due to time constraints I have only tested the algorithms on grayscale
pictures and also not on real medical data, but nonetheless I still get results
that should scale to real data.
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Simulating fluids using level sets

We have previously discussed the advantages of using level set methods to
evolve interfaces by representing them implicitly rather than explicitly. One
area in which this proves particularly useful is in the simulation of physical
phenomena. We look at one such example in this section: the simulation
of fluids. The basic idea is to let the fluid be represented by the zero-level
isosurface of a signed distance field. By solving a set of equations we arrive
at a velocity field, with which the interface can be evolved as discussed in the
section on generating motion by externally generated velocity fields, section 3.1
on page 15.

7.1 Fluid equations

The basis of our fluid simulator is the incompressible Navier-Stokes equations
as presented in [Bri08], a common approach to fluid simulation. These are a
set of equations which describe the motion of an incompressible fluid. Incom-
pressibility is a central quality of fluids. Simply put, it means that the fluid
cannot grow or shrink in size. Naturally this property does not quite hold for
real-world fluids, especially if we include gases in the definition, as fluids in
the real world do compress to some degree. For graphical simulation purposes,
however, it is adequate to assume complete incompressibility.

Here, then, is how the incompressible Navier-Stokes equations are usually
written:

ou

1
G TEVAT Ay =GV Vi, (7.1)

V=0 (7.2)

We will be breaking these equations down into some simpler parts that can
be calculated discretely and numerically without too much hassle. For now,
the variables of the equations: u is the field of velocities that affect the fluid,
p is the density of the fluid, p tracks how much pressure is present across the
fluid, g is the downwards force of gravity acting upon the fluid and v is a term
known as viscosity, which basically says something about how easily the fluid
deforms.

Equation 7.1 is called the momentum equation and deals (not surprisingly)
with the momentum of the fluid. That is, how the fluid continues to move once
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in motion. Naturally, this equation also encompasses motion derived from
external forces like gravity.

The incompressibility of the fluid is captured by equation 7.2 on the pre-
ceding page. This equation is derived from looking at the normal component
of the velocity at the boundary of a given fluid. In basic terms, it says that the
amount of fluid flowing out of the fluid region is equal to the amount flowing in.
This measure of change is called divergence, and by this restriction we seek to
remove it with as much numerical accuracy as possible. When evolving the in-
terface with the resulting velocity field, the incompressibility constraint ensures
that the interface is never moved in a way that produces a larger or smaller
fluid volume (or area, in the case of our two dimensional implementation).

Looking at the equations, solving the entire scheme at once seems daunting.
Thankfully, [Bri08] presents us with a method for breaking them into smaller,
more managable parts. By using this technique, called splitting, we arrive at
the following parts:

D

Fz = 0 (advection), (7.3)

it

a—? = ¢ (body forces), (7.4)
ou 1
— +-Vp=0 7.5
TP (7.5)

such that V - @ = 0 (pressure/incompressibility), (7.6)

Notice that the momentum equation has been split into three seperate parts.
The first, advection, ensures that velocities are passed around the velocity field
properly. The second simply applies external forces. The third and fourth
adjust the velocity field under the incompressibility constraint, and thus the
velocity field is created and maintained across steps. To formalize the preceding
into an algorithm:

e Advect velocities around the velocity field

e Add external forces

e Adjust the velocity field for pressure

e Use the resulting velocity field to move the fluid

As mentioned, we use a signed distance function to represent the position and
layout of the fluid. The zero-level isocontour is the surface of the fluid and
naturally divides the domain into two sections: all values above zero represent
empty space not currently occupied by the fluid while everything below zero
represents the interior of the fluid.

Our natural inclination at this point would be to represent the discrete
velocity field as an identically sized double array (or triple, depending on di-
mensionality) of values. Each cell would hold the velocity of the fluid at that
point, which seems the simplest way of storing it. However, to ease certain
portions of later sections of the simulation we have chosen instead the ” Marker
and Cell” (or MAC for short) grid which [Bri08] credits to Harlow and Welch.
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7.2 Marker and cell grid

For a two-dimensional fluid domain, the velocities clearly need to be two-
dimensional as well. With the MAC grid we chose not to simply store the
complete velocity vector of the fluid at the center of each cell of the fluid. In-
stead, we store the only the normal components of the velocity at the edges of
cells. As figure 7.1 illustrates, each edge of cell in the signed distance field has

v(x,y-¥2)

l

U(X'l/z,y) > ¢()c(»'y)

u(x+%,y)

V(X,y+Y2)

Figure 7.1: The MAC grid stores velocities at the edge of cells, rather than the
center

associated with it a value indicating the component of the velocity vector in
the corresponding direction. In practical terms, we store two grids in addition
to the discretized signed distance field, one for each spatial dimension of the
velocity field.

The purpose of this initially unintuitive representation becomes apparent
when need to calculate central differences in the velocity field. With a "tra-
ditional” velocity field, computing the signed distance field we would sample
velocities at either side of the cell in question, ignoring the value stored at the
cell itself. Since our field may contain very thin feature-variation, this method
of central differencing may accidentally ignore ”sharp” features of no more than
a cell’s width.

With the MAC grid, when central differencing we can sample the ”half-
values” at the edges of cells, thereby efficiently avoiding this problem at no
additional cost.

The MAC grid also needs to be able to handle values being taken between
grid points. Not only at the cell edges, but at arbitrary locations in the grid,
particularly at grid centers. We will see why in this next section.

7.3 Advection and forces

With the grids thus in place, we may begin our algorithm. Referring to the
overview, the first step is the advection of the velocity field. In this step
we allow motion to carry on, retaining momentum as the fluid moves. The
implementation of this step is quite intuitive.

Recall equation 7.3 on the preceding page which describes the advection
step. With our grid-based representation of the fluid it seems obvious to use
an Eulerian solution to the equation. We won’t go into that, however, since
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it proves to be conditionally unstable. Instead we use something called the
semi-Lagrangian method. We have previously discussed the difference between
Eulerian and Lagrangian viewpoints. As the name suggests, this method is a
mix of the two, taking primarily from the Lagrangian.

Essentially, we see each cell in the grid as a newly-moved particle in a
Lagrangian system. To update a given cell, Zg, we first look up the velocity at
the grid center. Tracing this velocity backwards, we find where the ”particle”
originated from and take the value from that location to write to the current
cell. The method of backtracing can be as simple as a single step of forward
Euler, which has been discussed previously. For increased stability we use a
second-order Runge-Kutta method, as recommended in section 3.1 of [Bri08].
With Runge-Kutta we first take a half-step against the direction indicated by
the current cell to get an intermediate position: Tpniq = Ta — %Atﬁ (Zg). We
then use the velocity there to arrive at the final value.

After advecting, adding a force such as gravity is as simple as modifying
both components of the MAC grid in the desired direction. After this is done,
we are ready for the pressure calculations.

7.4 Incompressibility

We arrive now at the part of the simulator that most gives rise to fluid-like
behavior of the interface.

Recall that we want to solve equation 7.5 on page 33 while satisfying equa-
tion 7.6 on page 33. We use u and v as the horizontal and vertical components
of velocity in the mac grid, using half-indices to indicate whether we are sam-
pling at the top, bottom, left or right edge of the cell in question. Thus, the
horizontal component at cell (4, 7) is designated Ui 1 g The formulas for the
pressure update are as follows:

1 pit1,; —pij
n+1 i+1,7 2,]
+1 1,j+1 %,J
R v (7.8)

p Az

Notice in particular how the pressure is calculated at cell centers by using the
velocity at cell-edges for the central difference. This is the central purpose of
the MAC grid.

How, then, do we calculate the pressure? This portion of the simulation
is mathematically simple, but quite complex in implementation, since we are
interested in solving a large linear system of equations. Fortunately, a lot of
the groundwork has been done for us already. We leave the actual solving of
the system to an imported mathematical library and focus simply on properly
formulating the problem.

We may write the problem of finding the pressures in the grid in the fol-
lowing simple matrix-vector form:

Ap=1b (7.9)

p is what we are interested in finding, the domain-wide grid of pressures. A is
a matrix of coefficients to these pressures: A has a row for each fluid-filled cell,



CHAPTER 7. SIMULATING FLUIDS USING LEVEL SETS 36

with each of these rows containing non-zero values only in the cells correspond-
ing to the cell in question and its six neighbours. In this way, Ap represents the
unknown pressure for each cell in the grid. The right hand side of the equation,
b, is another domain-sized matrix containing the negative divergences of each
cell. Recall that we are trying to minimize divergence across the fluid. This is
in fact the entire point of the pressure update. The pressures we are trying to
find are exactly the pressures that, when added to the velocity field, will keep
the field divergence free. We won’t go into the details of the construction of
the A-matrix. It is technically straightforward since we know exactly where
our fluid currently is.

The b matrix on the right hand side of the equation is constructed from the
component velocities as follows:

scale = 1 / dx
loop over i, j where phi(i,j) < O
rhs (i, j) = -scale * (u(i+l,3)-u(i,J)
+v (i, J+1)-v (i, 3));

Of course, we are only interested in the cells which contain fluid, which in our
representation is everything on the negative side of the zero-level isosurface.

Finally, we relegate the solving of this system to an implementation of the
Preconditional Conjugate Gradient method. This is an iterative method, the
precise implementation of which lies somewhat outside the scope of this paper.
In short, the result of applying this method to our constructed linear system
yields the grid of pressures. Applying this to the velocity field should purge it
of divergence, thereby completing this step of the algorithm.

Finally, using this divergence free velocity field, we advect the values of the
signed distance field. To this end, we use the same Runge-Kutta method as
described in the advection of the velocity field. Of course, having done this we
need to reinitialize the signed distance field, as it likely no longer lives up the
the requirements described in chapter 2 on page 5.

Having done this, we are ready to start a new iteration afresh, and thus we
may iteratively evolve our interface in full accordance with the Navier-Stokes
equation.

7.5 Conclusion

While there are other methods for the simulation of fluids, the mathematical
simplicity of the equations used here should show that the level set method
lends itself particularly well to this sort of physical simulation. Other similar
methods use particles to track the surface of the fluids, but these can prove
expensive and relatively inaccurate.

Care needs to be taken, however, when using level sets. If features arise
in the fluid which are smaller than the size of a grid-cell, they may disappear
complettely as the grid is unable to represent them. Therefore, to preserve a
natural-seeming motion one should make sure that no accuracy smaller than
the cell size is required.

An implementation of the level set based fluid simulator has been incor-
porated into the joint level set project. At the time of writing, however, the
implementation is quite unstable. Currently, little regard is being given to the
size of the time-step for each iteration. This causes the simulation to ”blow
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up” before any useful simulation has been done! Fixing the time-step to some-
thing sensible is the obvious next step for the algorithm. Section 3.3 of [Bri0g§]
describes a method of limiting it to maximize stability.
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